复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (7): 99-107.DOI: 10.19936/j.cnki.2096-8000.20250728.012

• 设计与工艺 • 上一篇    下一篇

基于人工神经网络海因环氧树脂体系流变性的比较研究

雷世裕, 李玲*, 曹伟, 王艺轩, 董夏瑞   

  1. 中北大学 材料科学与工程学院,太原 030051
  • 收稿日期:2025-03-24 出版日期:2025-07-28 发布日期:2025-08-22
  • 通讯作者: 李玲(1965—),女,博士研究生,副教授,硕士生导师,研究方向为先进复合材料及智能材料,iamleeling@126.com。
  • 作者简介:雷世裕(2000—),男,硕士研究生,研究方向为智能材料。

Comparative study of chemorheological properties in hydantoin epoxy resin system using artificial neural networks

LEI Shiyu, LI Ling*, CAO Wei, WANG Yixuan, DONG Xiarui   

  1. School of Material Science and Technology, North University of China, Taiyuan 030051, China
  • Received:2025-03-24 Online:2025-07-28 Published:2025-08-22

摘要: 化学流变学分析在热固性树脂基复合材料加工成型中具有广泛应用,然而传统化学流变模型对加工黏度的预测常使用Dual-Arrhenius流变模型,该方法在具有多场耦合效应的热固性树脂体系中预测精度受限。为突破这一瓶颈,引入了人工智能的方法。采用DSC法分析了海因环氧树脂/马来酸酐体系的反应性,在65~85 ℃等温固化模式下进行了黏度数据采集,采用BP人工神经网络模型(BP-ANN模型)与Dual-Arrhenius流变模型(DA模型)对海因环氧树脂/马来酸酐体系的流变性能进行对比分析研究。结果表明,相较于DA模型,BP-ANN模型的均方误差降幅达26.0%,平均绝对百分比误差锐减65.0%,均方根误差降低13.0%,同时决定系数提升0.25%。BP-ANN模型相较于DA模型在预测精度上显著提升,这对热固性树脂基复合材料成型过程中的工艺选择和参数优化提供了一定的支撑。

关键词: 海因环氧树脂, Dual-Arrhenius流变模型, BP人工神经网络模型, 化学流变学, 黏度, 复合材料

Abstract: Chemorheological analysis has been widely applied in the processing of thermoset matrix composites. However, traditional chemorheological models for predicting processing viscosity, such as the Dual-Arrhenius (DA) rheological model, exhibit limited accuracy in thermoset resin systems with multi-field coupling effects. To address this limitation, an artificial intelligence (AI)-based approach was introduced. The reactivity of the hydantoin epoxy resin/maleic anhydride (HY/MAD) system was investigated using differential scanning calorimetry (DSC), and viscosity data were collected under isothermal curing conditions at 65~85 ℃. A backpropagation artificial neural network (BP-ANN) model was developed and systematically compared with the DA model to analyze the rheological behavior of the HY/MAD system. The results demonstrate that the BP-ANN model significantly outperforms the DA model in predictive accuracy: the mean square error is reduced by 26.0%, the mean absolute percentage error decreases sharply by 65.0%, the root mean square error is lowered by 13.0%, and the coefficient of determination improves by 0.25%. This marked enhancement in prediction precision provides critical support for optimizing process parameters and material design in thermoset matrix composite manufacturing, particularly in scenarios involving complex multi-physics coupling.

Key words: hydantoin epoxy resin, Dual-Arrhenius rheological model, backpropagation artificial neural network, chemorheological, viscosity, composites

中图分类号: