[1] 文友谊, 刘立朋, 叶宏军, 等. BMI树脂化学流变特性及化学流变模型研究[J]. 工程塑料应用, 2015, 43(5): 101-104. [2] 赵卫生, 孙超明, 王文晶, 等. RTM用乙烯基酯树脂化学流变性研究 [J]. 玻璃钢/复合材料, 2014(8): 97-100. [3] 张旭锋, 黎迪辉, 齐僖, 等. 基于松香酸酐的生物质环氧树脂体系流变特性[J]. 航空材料学报, 2021, 41(2): 98-104. [4] 高堂铃, 付刚, 王先杰, 等. RTM用低黏度树脂体系的工艺窗口预测[J]. 哈尔滨工业大学学报, 2021, 53(2): 162-167. [5] WU Z, WANG H, HE C, et al. The application of physics-informed machine learning in multiphysics modeling in chemical engineering[J]. Industrial & Engineering Chemistry Research, 2023, 62(44): 18178-18204. [6] ZHOU Z, WANG L, WANG J, et al. Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures[J]. ACS Applied Materials & Interfaces, 2022, 14(47): 52684-52690. [7] WANG T, WU B, HE Y, et al. AI prediction of H2 production in a biomass supercritical water gasification fluidized bed under pulsating inlets[J]. Industrial & Engineering Chemistry Research, 2023, 62(42): 17182-17193. [8] SHAH H, ILYAS A, MADRY A. Decomposing and editing predictions by modeling model computation[EB/OL]. (2024-04-17) [2025-04-17]. https://doi.org/10.48550/arXiv.2404.11534. [9] 罗玲, 田智立, 张涛, 等. 基于人工神经网络的热固性树脂基复合材料固化变形预测研究综述[J]. 复合材料科学与工程, 2022(11): 120-127. [10] HU Y, ZHAO W, WANG L, et al. Machine-learning-assisted design of highly tough thermosetting polymers[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55004-55016. [11] 牛芳旭, 孙超明, 贺靖, 等. 共固化蜂窝夹层结构长梁弯曲性能预测[J]. 复合材料科学与工程, 2025(2): 34-39, 128. [12] 闫珊, 付天宇, 许家忠, 等. 基于改进遗传算法的纤维张力模糊控制研究[J]. 复合材料科学与工程, 2025(2): 54-61, 144. [13] SHARAN A, MITRA M. Prediction of static strength properties of carbon fiber-reinforced composite using artificial neural network[J]. Modelling and Simulation in Materials Science and Engineering, 2022, 30(7): 075001. [14] 刘敬福, 叶建军, 周祥春, 等. 喷射成形TiCp/ZA35复合材料热挤压工艺的ANN优化和组织研究[J]. 航空材料学报, 2023, 43(2): 59-65. [15] 李骁, 夏佳佳, 张向奎. 基于人工神经网络的短纤维增强复合材料设计[J]. 计算机辅助工程, 2024, 33(2): 17-23. [16] XIN Y Q, LI L, FAN L Y. Prediction and analysis on chemorheology of MeHHPA/hydantoin epoxy resin[J]. Key Engineering Materials, 2017, 727: 497-502. [17] 李玲, 信雅全, 秦旭锋, 等. 海因环氧树脂的合成及其与六氢苯酐的固化行为[J]. 表面技术, 2018, 47(1): 230-235. [18] XING W, LI L, WANG Y, et al. Recyclable and shape-memory hydantoin epoxy resins based on dynamic ester-exchanged bonds[J]. Polymer Engineering & Science, 2023, 64(2): 506-517. [19] BLANCO J, LINARES M, LÓPEZ GRANADOS M, et al. Integrated environmental and exergoeconomic analysis of biomass-derived maleic anhydride[J]. Advanced Sustainable Systems, 2022, 6(9):2200121. [20] 梁志勇, 段跃新, 林云, 等. EPON862环氧树脂体系化学流变特性研究[J]. 复合材料学报, 2001, 18(1): 16-19. [21] 吴海, 肖加余, 邢素丽, 等. 耐高温缩水甘油胺型环氧树脂的化学流变特性[J]. 复合材料学报, 2016, 33(4): 741-748. [22] KIUNA N, LAWRENCE C J, FONTANA Q P V, et al. A model for resin viscosity during cure in the resin transfer moulding process[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(11): 1497-1503. [23] 于志省, 李应成, 王宇遥, 等. 人工神经网络在材料开发中的应用研究进展[J]. 工程塑料应用, 2023, 51(2): 158-164. [24] CAO L. A new age of AI: features and futures[J]. IEEE Intelligent Systems, 2022, 37(1): 25-37. [25] WANG M, XU J, REN W, et al. Laser electrochemical deposition hybrid preparation of an oil-water separation mesh with controllable pore diameter based on a BP neural network[J]. Langmuir, 2023, 39(21): 7281-7293. [26] WANG Y, WANG W, CHEN Y. Carnivorous plant algorithm and BP to predict optimum bonding strength of heat-treated woods[J]. Forests, 2023, 14(1): 51. |