[1] HINTON M J, KADDOUR A S, SODEN P D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence[J]. Composites Science and Technology, 2002, 62(12-13): 1725-1797. [2] SODEN P D, HINTON M J, KADDOUR A S. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data[J]. Composites Science and Technology, 2002, 62(12-13): 1489-1514. [3] HINTON M J, KADDOUR A S, SODEN P D. Evaluation of failure prediction in composite laminates: background to ‘part B’ of the exercise[J]. Composites Science and Technology, 2002, 62(12-13): 1481-1488. [4] FERREIRA L M, GRACIANI E, PARÍS F. Three dimensional finite element study of the behaviour and failure mechanism of non-crimp fabric composites under in-plane compression[J]. Composite Structures, 2016, 149: 106-113. [5] TURAKA S, CHINTALAPUDI R, GEETHA N K, et al. Experimental and numerical analysis of the microstructure and mechanical properties of unidirectional glass fiber reinforced epoxy composites[J]. Composite Structures, 2024, 331: 117887. [6] XIE N B, SMITH R A, MUKHOPADHYAY S, et al. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials & Design, 2018, 140: 7-20. [7] CIMOLAI G, YASAEE M. Numerical simulations of embedded wrinkle defects geometry on the strength knockdown of FRP composites[J]. Composite Structures, 2023, 305: 116541. [8] ZHANG B, KAWASHITA L F, JONES M I, et al. An experimental and numerical investigation into damage mechanisms in tapered laminates under tensile loading[J]. Composites Part A: Applied Science and Manufacturing, 2020, 133: 105862. [9] 张琪, 蔡登安, 余章杰, 等. 碳纤维/环氧树脂复合材料L型接头拉伸失效机制[J]. 复合材料学报, 2023, 40(1): 542-552. [10] WANG C, VASSILOPOULOS A P, KELLER T. Experimental investigation of two-dimensional mode-Ⅱ delamination in composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107666. [11] WANG C, VASSILOPOULOS A P, KELLER T. Numerical investigation of two-dimensional mode-Ⅱ delamination in composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2024, 179: 108012. [12] ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures, 2008, 86(1-3): 194-210. [13] GARNICH M R, AKULA V M K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites[J]. Applied Mechanics Reviews, 2009, 62: 010801. [14] CAMPAGNA D, OLIVERI V, BENEDETTI I. An adaptive Ritz formulation for progressive damage modelling in variable angle tow composite plates[J]. Composite Structures, 2024, 331: 117915. [15] CAMPAGNA D, MILAZZO A, BENEDETTI I, et al. A non-linear Ritz method for progressive failure analysis of variable angle tow composite laminates[J]. Mechanics of Advanced Materials and Structures, 2023, 30(5): 995-1008. [16] YANG Q J, HAYMAN B. Simplified ultimate strength analysis of compressed composite plates with linear material degradation[J]. Composites Part B: Engineering, 2015, 69: 13-21. [17] 余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208. [18] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006. [19] GHOSH A, CHAKRAVORTY D. First ply failure analysis of laminated composite thin hypar shells using nonlinear finite element approach[J]. Thin-Walled Structures, 2018, 131: 736-745. [20] KHARGHANI N, SOARES C G. Analytical and experimental study of the ultimate strength of delaminated composite laminates under compressive loading[J]. Composite Structures, 2019, 228: 111355. [21] KHARGHANI N, SOARES C G. Application of layerwise HSDT and fracture analysis in the ultimate strength of composite plates with delamination in bending[J]. International Journal of Solids and Structures, 2022, 234: 111263. [22] GHANNADPOUR S A M, SHAKERI M, BARVAJ A K. Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods[J]. Steel and Composite Structures, 2018, 29(6): 785-802. [23] 黄争鸣. 复合材料的力学理论[J]. 复合材料学报, 2023, 40(6): 1-26. [24] HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(2): 143-172. [25] HUANG Z M. Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles[J]. Composite Structures, 2021, 262: 113279. [26] GUEDES R M. Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites[J]. Composite Structures, 2021, 257: 113170. [27] TSAI S W, SIHN S, MELO J D D. Trace-based stiffness for a universal design of carbon-fiber reinforced composite structures[J]. Composites Science and Technology, 2015, 118: 23-30. [28] TSAI S W, MELO J D D. An invariant-based theory of composites[J]. Composites Science and Technology, 2014, 100: 237-243. |