[1] PILWON H, WANG M G. Current hand exoskeleton technologies for rehabilitation and assistive engineering[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(4): 807-824. [2] SANG B M, YOUNG H J, SEUNG H, et al. Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: a pilot study[J]. International Journal of Precision Engineering & Manufacturing, 2017, 18(11): 1173-1781. [3] 陈子明, 尹涛, 潘弘, 等. 一种三自由度并联踝关节康复机构[J]. 机械工程学报, 2020, 56(21): 70-78. [4] 田宇, 王洪波, 刘颖, 等. 一种食指康复外骨骼机器人设计与分析[J]. 机械工程学报, 2023, 59(9): 40-50. [5] ZHANG H Z. Design and analysis of an exoskeleton robot for index finger rehabilitation[J]. Journal of Mechanical Engineering, 2023, 59(9): 40-50. [6] HEO P, GU G M, LEE S J, et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(5): 807-824. [7] HO J, KIM D H. Development of a passive modular knee mechanism for a lower limb exoskeleton robot and its effectiveness in the workplace[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(2): 227-236. [8] LIM D H, KIM W S, KIM H J. Development of real-time gait phase detection system for a lower extremity exoskeleton robot[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(5): 681-687. [9] KIM K J, KANG M S, CHOI Y. Development of the exoskeleton knee rehabilitation robot using the linear actuator[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(10): 1889-1895. [10] 周加永, 胡浩, 范天峰, 等. 面向士兵体力增强的单兵助力机器人设[J]. 火力与指挥控制, 2022, 47(4): 96-103. [11] 马宇, 吴庆勋, 李如飞, 等. 外骨骼伺服驱动器效率提升研究[J]. 载人航天, 2022, 28(2): 223-229. [12] 宋遒志, 王晓光, 王鑫, 等. 多关节外骨骼助力机器人发展现状及关键技术分析[J]. 兵工学报, 2016, 37(1): 173-185. [13] 张雷雨, 李剑锋, 刘钧辉, 等. 上肢康复外骨骼的设计与人机相容性分析[J]. 机械工程学报, 2018, 54(5): 20-28. [14] BASER O, KIZILHAN H, KILIC E. Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking[J]. Journal of Mechanical Science and Technology, 2020, 50(6): 2597-2607. [15] LEE S, LEE J, KIM M, et al. A new master-arm for man-machine interface[C]//IEEE SMC’99 Conference Proceedings. Tokyo: Institute of Electrical and Electronics Engineers, 1999: 98-106. [16] WANG F, WEI X T, GUO J Y, et al. Research progress of rehabilitation exoskeletal robot and evaluation methodologies based on bioelectrical signals[C]//2019 IEEE 9th Annual International Conference. Suzhou: Institute of Electrical and Electronics Engineers, 2019: 106-121. [17] BAUER M O, VIZI M B, GALAMBOS P, et al. Direct drive hand exoskeleton for robot-assisted post stroke rehabilitation[J]. Acta Polytechnica Hungarica, 2021, 18(5): 37-54. [18] WANG W A, LI H A, XIAO M A, et al. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation[J]. Medical Engineering & Physics, 2020, 79(10): 19-25. [19] HASAN S K, DHINGRA A K. Development of a sliding mode controller with chattering suppressor for human lower extremity exoskeleton robot[J]. Results in Control and Optimization, 2022, 20(3): 202-252. [20] PAVÓN N, LÓPEZ J A. Architecture for smart control of an exoskeleton robot in rehabilitation by using a natural user interface based on gestures[J]. Journal of Medical Systems, 2020, 44(9): 95-124. [21] YAO X F, MA Y J, FANG D N. Design theory and dynamic mechanical characterization of the deployable composite tube hinge[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 633-639. [22] YEE J, PELLEGRINO S. Composite tube hinges[J]. Journal of Aerospace Engineering, 2005, 18(4): 224-231. [23] MALLIKARACHCHI H M, PELLEGRINO S. Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J]. Journal of Spacecraft & Rockets, 2011, 48(1): 187-198. [24] MALLIKARACHCHI H M, PELLEGRINO S. Design of ultrathin composite self-deployable booms[J]. Journal of Spacecraft and Rockets, 2014, 51(6): 1811-1821. |