[1] BOCHKOVSKIY A, WANG C-Y, LIAO H-Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-12-30]. https://arxiv.org/pdf/2004.10934v1. [2] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2024-09-14]. https://arxiv.org/abs/2209.02976. [3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788. [4] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 6517-6525. [5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-12-30]. https://arxiv.org/abs/1804.02767. [6] WANG C-Y, BOCHKOVSKIY A, LIAO H-Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver, BC, Canada: IEEE, 2023: 7464-7475. [7] 苏志威, 黄子涵, 邱发生, 等. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法[J]. 航空动力学报, 2024, 39(6): 121-129. [8] 谢雨欣, 龚烨飞, 谷心浩, 等. 基于RGB-D特征融合的焊缝表面缺陷检测方法[J]. 焊接学报, 2024, 45(12): 72-78. [9] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2022: 443-459. [10] YU Y, ZHANG Y, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering Applications of Artificial Intelligence, 2023, 126:107079. [11] TAN M X, PANG R M, LE Q V. Efficient Det: scalable and efficient object detection[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 10781-10790. [12] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. (2023-12-29)[2024-12-30]. https://arxiv.org/abs/2312.17663. [13] MA M, PANG H. SP-YOLOv8s: an improved YOLOv8s model for remote sensing image tiny object detection[J]. Applied Sciences, 2023, 13(14): 8161. [14] 司坤宇, 牛春晖. 基于混合差分卷积和高效视觉Transformer网络的三重多模态图像融合算法[J]. 红外与激光工程, 2024, 53(11): 331-345. [15] LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 936-944. [16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768. [17] GHIASI G, LIN T Y, LE Q V.NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7029-7038. [18] DU S, ZHANG B, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]//IEEE. 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). Chengdu: IEEE, 2021: 92-98. [19] 李磊磊, 王明泉, 赵付宝, 等. 基于Mask R-CNN的复合材料夹杂缺陷自动检测研究[J]. 复合材料科学与工程, 2024(1): 83-88. [20] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [21] 彭鸿瑞, 杨桂华. 基于改进YOLOv8的SOP芯片缺陷检测研究[J]. 电子测量技术, 2024, 47(12): 71-82. |