[1] 尹华丽, 王清和. 界面粘接性能的影响因素[J]. 固体火箭技术, 1998(3): 42-48. [2] 马晓琳, 申志彬, 崔辉如. 固体发动机推进剂/绝热层界面Ⅰ型脱粘力学行为试验与仿真研究[J]. 固体火箭技术, 2019, 42(3): 282-289. [3] 余家泉, 郑健, 周清春, 等. CMDB/EPDM包覆界面脱粘性能研究[J]. 固体火箭技术, 2015, 38(4): 528-532. [4] GARG N, PRUSTY B G, OOI E T, et al. Application of scaled boundary finite element method for delamination analysis of composite laminates using cohesive zone modelling[J]. Composite Structures, 2020, 253: 112773. [5] POBLETE F R, MONDAL K, MA Y, et al. Direct measurement of rate-dependent mode Ⅰ and mode Ⅱ traction-separation laws for cohesive zone modeling of laminated glass[J]. Composite Structures, 2022, 279: 114759. [6] 伍鹏, 李高春, 钱仁军. 固体火箭发动机推进剂/衬层/绝热层粘接界面细观损伤过程数值模拟研究[J]. 固体火箭技术, 2021, 44(3): 343-349. [7] 寗畅, 刘向阳, 薛继明, 等. 固体火箭发动机推进剂/衬层界面贮存性能研究进展[J]. 固体火箭技术, 2022, 45(2): 229-236. [8] 李康佳, 强洪夫, 王哲君, 等. 固体火箭发动机粘接界面蠕变损伤研究进展[J]. 含能材料, 2022, 30(8): 861-871. [9] 徐伯起, 卢明章, 李高春, 等. 车载运输过程中固体发动机粘接界面损伤研究[J]. 兵器装备工程学报, 2021, 42(7): 252-257. [10] 张晓军, 常新龙, 陈顺祥, 等. 固体火箭发动机粘接界面湿热老化与寿命评估[J]. 固体火箭技术, 2013, 36(1): 27-31. [11] LI S, THOULESS M D, WAAS A M, et al. Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite[J]. Composites Science and Technology, 2005, 65(3): 537-549. [12] 刘应雷, 高波, 姚东. 基于GRNN的三元乙丙橡胶薄膜粘接界面力学性能参数反演[J]. 固体火箭技术, 2019, 42(6): 699-705. [13] 崔辉如, 王佳奇, 吕轩, 等. 基于三维八节点内聚单元的固体火箭发动机粘接界面结构分析[J]. 固体火箭技术, 2022, 45(3): 366-377. [14] PARK K, PAULINO G H, ROESLER J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(6): 891-908. [15] EKHTIYARI A, SHOKRIEH M M. A novel rate-dependent cohesive zone model for simulation of mode Ⅰ dynamic delamination in laminated composites[J]. Composite Structures, 2022, 281: 114962. [16] ZHOU Q C, JU Y T, WEI Z, et al. Cohesive zone modeling of propellant and insulation interface debonding[J]. The Journal of Adhesion, 2014, 90(3): 230-251. [17] 赵朝坤, 刘应雷, 刘凯, 等. (T700/环氧)/EPDM粘接界面参数的实验测试及反演分析[J]. 固体火箭技术, 2021, 44(4): 520-526. [18] ZANI M, FANTERIA D, CATAPANO A, et al. A consistent energy-based cohesive zone model to simulate delamination between differently oriented plies[J]. Composite Structures, 2022, 282: 115042. [19] LIANG Y J, DÁVILA C G, IARVE E V. A reduced-input cohesive zone model with regularized extended finite element method for fatigue analysis of laminated composites in Abaqus[J]. Composite Structures, 2021, 275: 114494. [20] 韩龙, 许进升, 周长省. HTPB/IPDI复合固体推进剂细观界面率相关参数的反演识别研究[J]. 含能材料, 2016, 24(10): 928-935. [21] HOOKE R, JEEVES T A. “Direct search” solution of numerical and statistical problems[J]. Journal of the ACM (JACM), 1961, 8(2): 212-229. [22] 刘伟先, 周光明, 高军, 等. 考虑剪切非线性影响的复合材料连续损伤模型及损伤参数识别[J]. 复合材料学报, 2013, 30(6): 221-226. [23] ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-13[S]. 2013. [24] ASTM International. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14[S]. 2014. [25] 中国石油和化学工业联合会. 胶粘剂 拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008. |