[1] ELAMIN M, LI B, TAN K T. Impact damage of composite sandwich structures in arctic condition[J].Composite Structures, 2018, 192: 422-433. [2] ACANFORA V, SELLITTO A, RUSSO A, etal. Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications[J].Aerospace Science and Technology, 2023, 137: 108276. [3] 齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J].玻璃钢/复合材料, 2019(5): 5-11. [4] XIE Z, ZHAO W, WANG X, et al. Low-velocity impact behaviour of titanium honeycomb sandwich structures[J].Journal of Sandwich Structures & Materials, 2018, 20(8): 1009-1027. [5] YANG B, ZHOU Q, LEE J, et al. Experimental and numerical study of low-velocity impact damage in sandwich panel with UHMWPE composite facings[J].International Journal of Solids and Structures, 2023, 284: 112519. [6] BOHARA R P, LINFORTH S, NGUYEN T, et al. Anti-blast and impact performances of auxetic structures: a review of structures, materials, methods, and fabrications[J].Engineering Structures, 2023, 276: 115377. [7] CHENG S, YANG H, GENG C, et al. Study on the sinusoidal honeycomb core metamaterial sandwich panel with high-performance and low-velocity impact resistance[J].Applied Physics A, 2022, 128(12): 1092. [8] YOLCU D A, BABA B O. Experimental investigation on impact behavior of curved sandwich composites with chiral auxetic core[J].Composite Structures, 2024, 329: 117749. [9] ZHANG Y, PENG J, QIAN Y, et al. On low-velocity impact behavior of sandwich composites with negative Poisson’s ratio lattice cores[J].Composite Structures, 2022, 299: 116078. [10] LIU Z, LIU J, LIU J, et al. The impact responses and failure mechanism of composite gradient reentrant honeycomb structure[J].Thin-Walled Structures, 2023, 182: 110228. [11] 李天臣, 郭开岭, 朱凌, 等. 低速冲击下蜂窝夹芯板动态响应及梯度影响研究[J].武汉理工大学学报(交通科学与工程版), 2023, 47(3): 447-453. [12] SUN G, WANG E, WANG H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J].Materials & Design, 2018, 160: 1117-1136. [13] XIAO W, LI Y, HU Y, et al. Analytical study on the dynamic mechanical behaviours of foam-core sandwich plate under repeated impacts[J].Thin-Walled Structures, 2024, 196: 111480. [14] ZHANG Y, LI Y, GUO K, et al. Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich panels under repeated impact loads[J].Ocean Engineering, 2021, 219: 108344. [15] 薛普, 秦绪国, 苏伟, 等. 局部冲击下复合材料蜂窝夹芯结构的失效行为与吸能机理[J].导弹与航天运载技术, 2022(5): 126-131. [16] ZHANG J, YUAN H, LI J, et al. Dynamic response of multilayer curved aluminum honeycomb sandwich beams under low-velocity impact[J].Thin-Walled Structures, 2022, 177: 109446. [17] WU X, SU Y, SHI J. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials[J].Composite Structures, 2020, 247: 112451. [18] AGNEW S R, DUYGULU Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of plasticity, 2005, 21(6): 1161-1193. [19] CHEN Y, CHEN L, HUANG Q, et al. Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact[J].Mechanics of Advanced Materials and Structures, 2022, 29(25): 4582-4598. [20] 徐菁, 李岩, 付昆昆. 仿羊角管状复合材料结构抗冲击性能[J].复合材料学报, 2023, 40(4): 2365-2376. [21] ZHOU X, LI J, QU C, et al. Bending behavior of hybrid sandwich composite structures containing 3D printed PLA lattice cores and magnesium alloy face sheets[J].The Journal of Adhesion, 2022, 98(11): 1713-1731. [22] ZHOU X, QU C, LUO Y, et al. Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures[J].Journal of Materials Engineering and Performance, 2021, 30: 8763-8770. |