复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (5): 1-14.DOI: 10.19936/j.cnki.2096-8000.20250528.001

• 基础与力学性能研究 •    下一篇

平纹CF/PEEK热塑性复合材料高温高应变率压缩失效机理

于鑫涛1, 张发2, 高鑫1, 张旭1, 潘忠祥1*, 曹淼3*   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 杭州 310018;
    2.中国商用飞机有限责任公司 北京民用飞机技术研究中心, 北京 102211;
    3.嘉兴学院 材料与纺织工程学院, 嘉兴 314001
  • 收稿日期:2024-02-20 出版日期:2025-05-28 发布日期:2025-07-11
  • 通讯作者: 潘忠祥(1987—2024),男,博士,副教授,硕士生导师,研究方向为纺织复合材料设计,panzx@zstu.edu.cn。曹淼(1991—),女,博士,讲师,硕士生导师,研究方向为先进复合材料有限元分析,00007889@zjxu.edu.cn。
  • 作者简介:于鑫涛(1998—),男,硕士研究生,研究方向为纺织复合材料有限元分析。
  • 基金资助:
    国家自然科学基金(52075498,12102144)

High-temperature high strain rate compression failure mechanism of plain weave CF/PEEK thermoplastic composite materials

YU Xintao1, ZHANG Fa2, GAO Xin1, ZHANG Xu1, PAN Zhongxiang1*, CAO Miao3*   

  1. 1. College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China;
    2. Beijing Civil Aircraft Technology Research Center, Commercial Aircraft Corporation of China, Beijing 102211, China;
    3. College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
  • Received:2024-02-20 Online:2025-05-28 Published:2025-07-11

摘要: 本文基于多尺度力学方法提出一种预测平纹CF/PEEK复合材料在高温场和高应变率下的冲击力学响应和失效机制的方法。首先,基于复合材料内纤维、纤维束以及基体的真实几何结构和空间分布建立相应的微观、介观和宏观尺度的有限元模型,基于固化纤维束内纤维的典型空间分布特征建立微观力学模型,通过周期性边界条件扩展至介观尺度纤维束的力学性能参数,从而预测纤维束在不同加载模式下的失效模式;其次,建立介观尺度平纹交织结构单胞模型,得到复合材料内单层板力学性能,建立微结构与宏观尺度性能之间等效性连接;最后,分别测试得到温度场与动态压缩性能参数,创建与宏观试件等大的均质化模型,与试验结果进行对比,验证模型的有效性,同时分析预测试件整体的冲击力学响应与失效模式,揭示平纹CF/PEEK热塑性复合材料在温度场耦合下的动态压缩效应。本研究可为热塑性复合材料在极端环境下的服役安全提供有益参考。

关键词: 热塑性复合材料, 压缩, 应变速率效应, 温度效应, 多尺度建模

Abstract: This paper proposed a method based on multiscale mechanics to predict the impact mechanical response and failure mechanism of plain weave CF/PEEK composite materials under high-temperature and high strain rate conditions. Firstly, finite element models at micro, meso, and macro scales were established based on the real geometric structure and spatial distribution of fibers, fiber bundles, and matrix in the composite materials. A micro-mechanical model was developed based on the typical spatial distribution of fibers within the solidified fiber bundles, and extended to the meso scale to predict the failure modes of fiber bundles under different loading conditions using periodic boundary conditions. Secondly, a meso scale plain weave structure unit cell model was established to obtain the mechanical properties of single-layer plates in the composite materials, and an equivalent connection between microstructure and macro scale performance was established. Finally, temperature field and dynamic compression performance parameters are tested, and a homogeneous model similar to macro specimens is created to verify the effectiveness of the model by comparing with experimental results. Meanwhile, the impact mechanical response and failure modes of the pre-tested specimens were analyzed to reveal the dynamic compression effects of plain weave CF/PEEK thermoplastic composite materials under coupled temperature field conditions. This study provides valuable reference for the safe service of thermoplastic composite materials in extreme environments.

Key words: thermoplastic composite materials, compression, strain rate effect, temperature effect, multi-scale modeling

中图分类号: