COMPOSITES SCIENCE AND ENGINEERING ›› 2014, Vol. 0 ›› Issue (9): 85-98.
Previous Articles Next Articles
JIANG Da-zhi, JU Su, ZHANG Jian-wei, XIAO Jia-yu
Received:
2014-08-05
Online:
2014-09-28
Published:
2021-09-16
CLC Number:
JIANG Da-zhi, JU Su, ZHANG Jian-wei, XIAO Jia-yu. METHODS AND TECHNIQUES TO ACHIEVE LIGHT-WEIGHT DESIGN OF COMPOSITE STRUCTURES[J]. COMPOSITES SCIENCE AND ENGINEERING, 2014, 0(9): 85-98.
[1] 陈详宝. 先进复合材料低成本制造技术 [M]. 北京:化学工业出版社,2004. [2] http://www.velocite-bikes.com/carbon-fiber.html. [3] Zeng T, Wu L, Guo L. Mechanical Analysis of 3D Braided Composites: A Finite Element Model[J]. Composite Structures, 2004, 64: 399-404. [4] Mahmood A, Wang X, Zhou C. Modeling Strategies of 3D Woven Composites: A Review[J]. Composite Structures, 2011, 93: 1947-1963. [5] Fang G, Liang J, Wang B. Progressive Damage and Nonlinear Analysis of 3D Four-directional Braided Composites Under Unidirectional Tension[J]. Composite Structures, 2009, 89: 126-133. [6] Fang G, Liang J, Lu Q, et al. Investigation on the Compressive Properties of the Three Dimensional Four-directional Braided Composites[J]. Composite Structures, 2011, 93: 392-405. [7] Harris C E, Starnes J H, Shuart M J. An Assessment of the State-of-the-art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles[Z]. NASA TM-2001-210844. [8] Byrne M T, Gun'ko Y K. Recent Advances in Research on Carbon Nanotube–Polymer Composites[J]. Advanced Materials, 2010, 22(15): 1672-1688. [9] Thostenson E T, Ren Z, Chou T W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912. [10] Chou T W, McCullough R L, Pipes R B. Composites[J]. Scientific American, 1986, 254: 193-203. [11] Li C Y, Chou T W. Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites[J]. Journal of Nanoscience and Nanotechnology, 2003, 3(5): 423-430. [12] Frehill F, Vos J G, Benrezzak S, et al. Interconnecting Carbon Nanotubes with an Inorganic Metal Complex[J]. Journal of the American Chemical Society, 2002, 124(46): 13694-13695. [13] Zhang J, Jiang D. Interconnected Multi-walled Carbon Nanotubes Reinforced Polymer-matrix Composites[J]. Composites Science and Technology, 2011, 71(4): 466-470. [14] Zhang J, Ju S, Jiang D, et al. Reducing Dispersity of Mechanical Properties of Carbon Fiber/Epoxy Composites by Introducing Multi-walled Carbon Nanotubes[J]. Composites Part B, 2013, 54: 371-376. [15] Reddy A D. Behavior of Continuous Filament Advanced Composite Isogrid Structure[D]. Altanta, US: Georgia Institute of Technology, 1980: 1-2. [16] 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. [17] 余同希. 关于“多胞材料”和“点阵材料”的一点意见[J]. 力学与实践, 2005, 27(3): 90. [18] Fan H L, Jin F N, Fang D N. Uniaxial Local Buckling Strength of Periodic Lattice Composites[J]. Materials and Design, 2009, 30: 4136-4145. [19] 范华林, 孟凡颢, 杨卫. 碳纤维格栅结构力学性能研究[J]. 工程力学, 2007, 24(5): 42-46. [20] Hou A, Gramoll K. Compressive Strength of Composite Lattice Structures[J]. Journal of Reinforced Plastics and Composites, 1998, 17(5): 462-483. [21] Vasiliev V V, Barynin V A, Rasin A F. Anisogrid Lattice Structures-Survey of Development and Application[J]. Composite Structrues, 2001, 54: 361-370. [22] Kidane S. Buckling Analysis of Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2002. [23] Fan H L, Meng F H, Yang W. Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers[J]. Composite Structures, 2007, 81: 533-539. [24] Tsai S W, Liu K S, Manne P M. Manufacture and Design of Composite Grids[J]. Materials de Construction, 1997, 47(247/248): 59-71. [25] Kim T D. Fabrication and Testing of Composite Isogrid Stiffened Cylinder[J]. Composite Structures, 1999, 45: 1-6. [26] Kim T D. Fabrication and Testing of Thin Composite Isogrid Stiffened Panel[J]. Composite Structures, 2000, 49: 21-25. [27] Huybrechts S M, Meink T E, Wegner P M, et al. Manufacturing Theory for Advanced Grid Stiffened Structures[J]. Composite: Part A, 2002, 33: 155-161. [28] Vailiev V V, Razin A F. Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications[J]. Composite Structrues, 2006, 76: 182-189. [29] Hohe J, Beschorner C, Becker W. Effective Elastic Properties of Hexagonal Quadrilateral Grid Structures[J]. Composite Structures, 1999, 46: 73-89. [30] Han D Y, Tsai S W. Interlocked Composite Grids Design and Manufacturing[J]. Journal of Composite Materials, 2003, 37(4): 287-316. [31] Hicks M T. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique[D]. Stanford, US: Stanford University, 2001. [32] Colwell T B. The Manufacturing and Application of Composite Grid structure[D]. Stanford, US: Stanford University, 1996. [33] Chen H J, Tsai S W. Analysis and Optimum Design of Composite Grid Structures[J]. Journal of Composite Materials, 1996, 30(4): 503-534. [34] Wodesenbet E, Kidane S, Pang S S. Optimization for Buckling Loads of Grid Stiffened Composite Panels[J]. Composite Structures, 2003, 60: 159-169. [35] Jadhav P, Mantena P R. Parametric Optimization of Grid-Stiffened Composite Panels for Maximizing their Performance under Transverse Loading[J]. Composite Structures, 2007, 77: 353-363. [36] Akl W, El-Sabbagh A, Baz A. Optimizaiton of the Static and Dynamic Characteristic of Plates with Isogrid Stiffeners[J]. Finite Elements in Analysis and Design, 2008, 44: 513-523. [37] Chen Y, Gibson R F. Analytical and Experimental Studies of Composite Isogrid Structures with Integral Passive Damping[J]. Mechanics of Advanced Materials and Structures, 2003, 10: 127-143. [38] Maricherla D. Advanced Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2005. [39] Sekine H, Atobe S. Identificaiton of Locations and Force Histories of Multiple Point Impacts on Composite Isogrid-Stiffened Panels[J]. Composite Structures, 2009, 89: 1-7. [40] Slinchenko D, Verijenko V E. Structural Analysis of Composite Lattice Shells of Revolution on the Basis of Smearting Stiffness[J]. Composite Structures, 2001, 54: 341-348. [41] 周涛. 二维网格复合材料点阵结构及其刚度与强度分析[D]. 长沙: 国防科学技术大学, 2007. [42] 张昌天. 二维点阵复合材料结构的制备与性能[D]. 长沙: 国防科学技术大学, 2008. [43] Zhang B M, Zhang J F, Wu Z J, et al. A Load Reconstruction Model for Advanced Grid-Stiffened Composite Plates[J]. Composite Structures, 2008, 82: 600-608. [44] 章继峰, 张博明, 杜善义. 平板型复合材料格栅结构的增强改进与参数设计[J]. 复合材料学报, 2006, 23(3): 153-157. [45] Zhang Z F, Chen H R, Ye L. Progressive Failure Analysis for Advanced Grid Stiffened Composite Plates/Shells[J]. Composite Structures, 2008, 86: 45-54. [46] 张志峰, 陈浩然, 白瑞祥. 含初始缺陷复合材料格栅加筋圆柱壳的鲁棒优化设计[J]. 固体力学学报, 2006, 27(1): 58-64. [47] 白瑞祥, 王蔓, 陈浩然. 含损伤复合材料AGS 板的屈曲特性[J]. 复合材料学报, 2005, 22(4): 136-141. [48] 白瑞祥, 李泽成, 陈浩然. 基于累积失效法的含损伤格栅加筋板非线性屈曲状态分析[J]. 力学季刊, 2006, 27(2): 240-246. [49] Evans A G. Lightweight Materials and Structures[J]. MRS Bulletin, 2001, 26: 790-797. [50] Evans A G, Hutchinson J W, Fleck N A, et al. The Topology Design of Multifunctional Cellular Metals[J]. Progress in Materials Science, 2001, 46: 309-327. [51] Deshpande V S, Ashby M F, Fleck N A. Foam Topology Bending versus Stretching Dominated Architectures[J]. Acta Materilia, 2001, 49: 1035-1040. [52] 肖加余, 江大志, 曾竟成. 超轻质点阵复合材料结构研究进展[C]. 张家界: 中国航天第十三专业信息网2008年技术交流会论文集, 2008: 7-12. [53] Fan H L, Yang W, Wang B, et al. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers[J]. Tsinghua Science and Technology, 2006, 11(5): 515-522. [54] 范华林, 杨卫, 方岱宁, 等. 新型碳纤维点阵复合材料技术研究[J]. 航空材料学报, 2007, 27(1): 46-50. [55] Darooka D K, Jensen D W. Advanced Space Structure Concepts and Their Development[R]. American Institute of Aeronautics and Astronautics, AIAA-2001-1257, 2001: 1-10. [56] IsoTruss Structure, Inc. Technical Overview of IsoTrussTM Technology[R]. Technical Report from IsoTruss Structure Company, 2002: 10-11. [57] McCune D T. Manufacturing Quality of Carbon/Epoxy IsoTruss© Reinforced Concrete Structures[D]. Provo, US: Brigham Young University, 2005: 2-3. [58] http://www.isotruss.org/index.htm, 2004-10-28/2010-12-23. [59] Maneepan K. Genetic Algorithm Based Optimization of FRP Composite Plates in Ship Structures[D]. Southampton, UK: University of Southampton, 2007: 23-27. [60] Almeida F S, Awruch A M. Design Optimization of Composite Laminated Structures using Genetic Algorithm and Finite Element Analysis[J]. Composite Structures, 2009, 88: 443-454. [61] Amago T. Sizing Optimization Using Response Surface Method in FOA[R]. R&D Review of Toyota CRDL, 2002, 37(1): 1-7. [62] Khuri A I, Cornell J A. Response Surfaces: Design and Analyses[M]. New York, US: Marcel Dekker, Inc., 1996. [63] Carley K M, Kamneva N Y, Reminga J. Response Surface Methodology[R]. Pittsburgh, US: Carnegie Mellon University, 2004. [64] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. Journal of Global Optimization, 2001, 21: 345-383. [65] Abouhamze M, Shakeri M. Multi-Objective Stacking Sequence Optimization of Laminated Cylindrical Panels Using a Genetic Algorithm and Neural Networks[J]. Composite Structures, 2007, 81: 253-263. [66] Ju S, Shenoi R A, Jiang D, et al. Multi-Parameter Optimization of Lightweight Composite Triangular Truss Structure Based on Response Surface Methodology [J]. Composite Structures, 2013, 97: 107-116. [67] Hurez A, Akkus N, Verchery G, et al. Design and Analysis of Composite Structures with Interlaced Fibers[J]. Composites, 2001, 32A(10): 1455-1463. [68] 胡泽. 无人机结构用复合材料及其制造技术综述[J]. 航空制造技术, 2007, (6): 66-70. [69] Black S. A Grid-Stiffened Alternative to Core Laminates[J]. High Performance Composites, 2002, 3: 48-51. [70] Rackliffe M E. Development of Ultra-Lightweight IsotrussTM Grid Structures[D]. Provo, US: Brigham Young University, 2002. |
[1] | MAO Jingqiao, HU Yiling, PANG You, YANG Yuqiu. Preparation and performance study of sizing treated carbon fiber/polypropylene composite molded by CF/PP fiber mat [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 32-38. |
[2] | GU Jing, ZONG Zhongling, XIE Qinghai, LI Keke, LI Meng. Study on behavior of GFRP beam-to-column T-joints based on angle steel connection [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(7): 53-61. |
[3] | LI Zhiqiang, ZHANG Hongjia, SUN Yujie. Effect of BFRP strengthening on bearing capacity of freeze-thaw damaged concrete short columns [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(2): 89-95. |
[4] | YIN Zhihao, GE Chaokun, XU Ping, TIE Ying, ZHANG Zhenzhen, JU Guang. Effect of EMAA stitching pattern on impact resistance of composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(12): 12-18. |
[5] | WANG Jiacheng, SUN Chao, HU Lizhou, JIA Yingjie, WANG Qingzhou. Study on the influence of constructing deformation rate on the mechanical properties of FRPM pipe culverts [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(11): 92-99. |
[6] | CHEN Yingxuan, MA Huihuang, SUN Ming, YANG Shaoxia, CHEN Jianpei, ZHOU Xiaodong. Research on cold plasma modified PLA fiber/TPS composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(7): 44-49. |
[7] | WANG Shaofei, XUE Kanghao, FAN Lin, YANG Qing, LÜ Yueen, DING Xiaoma, ZHAO Le, ZHANG Hui, LIU Yong. Preparation of copolyamide water-based sizing agent for carbon fiber and interfacial modification of CF/PA6 composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(6): 17-22. |
[8] | GOU Yikun, DUAN Yuexin, NING Bo, YANG Yang. Effect of binding yarn linear density change on properties of non-crimp fabrics composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(4): 21-26. |
[9] | XIN Zhibo, ZHU Yansong, DUAN Yugang, WANG Ben, HUANG Zhiwen, WANG Hongxiao, MING Yueke. Sealing design and test verification of helicopter composite fuel tank [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(4): 87-93. |
[10] | WU Zhen-hua, LIU Yao, ZHANG Zhi-fang. Electrical conductivity of cement reinforced with recycled CFRP [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(9): 48-53. |
[11] | LIU Xiao-fan, WU Shu-guang, XU Ren-xin. Properties of low temperature curing vinyl ester resin prepreg thickened by organic bentonite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(8): 89-92. |
[12] | GAO Hui, LUO Fa, QU Yong-ping, WANG Chun-hai. Fabrication and microwave absorption properties of SiCf/Al2O3/Mullite composite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(7): 60-65. |
[13] | LIU Zhi, ZHANG Bin, ZHAO Wei-wei, ZHANG Yong. The study of structural design and mechanical propeties of polyurethane composite walking board [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(7): 103-106. |
[14] | LIU Chao, WU Zheng-hong, SHAO Hong-yan, LIN Lei, MA Jian. Structure design and verification of resin matrix composite bypass casing [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(6): 81-88. |
[15] | PENG Chang-wei, HUANG Jun, WU Yu, YE Tai-zhi, HUANG Li-xin. Prediction of the mechanical properties of graphene/epoxy resin nanocomposites based on flexible node beam element and layered method [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(4): 18-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||