[1] LIU Y S, QI Y C, XU L H, et al. Study on energy absorption behavior of bionic tube inspired by feather shaft of bean goose[J]. Rendiconti Lincei-Scienze Fisiche e Naturali, 2022, 33(2): 363-374.
[2] 黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化[J]. 北京理工大学学报, 2020, 40(3): 267-274.
[3] TIWARI G, IQBAL M A, GUPTA P K. Energy absorption characteristics of thin aluminium plate against hemispherical nosed projectile impact[J]. Thin-Walled Structures, 2018, 126: 246-257.
[4] LI Q X, ZHI X D, FAN F. Dynamic crushing of uniform and functionally graded origami-inspired cellular structure fabricated by SLM[J]. Engineering Structures, 2022, 262: 114327.
[5] SHEN Y C, LIU Y. Bioinspired building structural conceptual design by graphic static and layout optimization: a case study of human femur structure[J]. Journal of Asian Architecture and Building Engineering, 2022, 21(5): 1762-1778.
[6] 于征磊, 信仁龙, 陈立新, 等. 增材制造镍钛仿生结构缓冲吸能及自恢复特性研究[J]. 振动与冲击, 2022, 41(21), 279-285.
[7] 于征磊, 陈立新, 徐泽洲, 等. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[8] SAJJAD R, CHAUHDARY S T, ANWAR M T, et al. A review of 4D printing-technologies, shape shifting, smart polymer based materials, and biomedical applications[J]. Advanced Industrial and Engineering Polymer Research, 2024, 7(1): 20-36.
[9] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering, 2020, 181: 107496.
[10] ZHANG H H, HUANG Z W, LI T, et al. Multiple performance evaluation of bionic thin-walled structures with different cross sections considering complex conditions[J/OL]. Journal of Environmental and Public Health, 2022[2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/36213039. DOI: 10.1155/2022/2220633.
[11] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures, 2018, 125: 76-88.
[12] ZHANG R, PANG H, HAN D L, et al. Bionic design in anti-bending and lightweight tube based on the tarsometatarsus of ostrich[J]. Rendiconti Lincei-Scienze Fisiche e Naturali, 2020, 31(8): 189-201.
[13] 邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究[J]. 高压物理学报, 2022, 36(3): 111-120.
[14] ZHOU J F, LIU S F, GUO Z Q, et al. Study on the energy absorption performance of bionic tube inspired by yak horn[J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7246-7258.
[15] TASDEMIRCI A, AKBULUT E F, GUZEL E, et al. Crushing behavior and energy absorption performance of a bio-inspired metallic structure: experimental and numerical study[J]. Thin-Walled Structures, 2018, 131: 547-555.
[16] CHEN J X, DU S C, PAN L C, et al. The compressive property of a fiber-reinforced resin beetle elytron plate and its influence mechanism[J]. Journal of Applied Polymer Science, 2021, 138(29):50692.
[17] HAN Q G, SHI S Q, LIU Z H, et al. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp[J]. Composites Part B: Engineering, 2020, 191: 107976.
[18] DING Z Q, WANG B, XIAO H, et al. Hybrid bio-inspired structure based on nacre and woodpecker beak for enhanced mechanical performance[J]. Polymers, 2021, 13(21): 3681.
[19] SHEN J H, XIE M Y, HUANG X D, et al. Behaviour of luffa sponge material under dynamic loading[J]. International Journal of Impact Engineering, 2013, 57: 17-26.
[20] LI T-T, WANG H Y, HUANG S-Y, et al. Bioinspired foam composites resembling pomelo peel: structural design and compressive, bursting and cushioning properties[J]. Composites Part B: Engineering, 2019, 172: 290-298.
[21] WEN Z, LI M. Compressive properties of functionally graded bionic bamboo lattice structures fabricated by FDM[J]. Materials, 2021, 14(16): 4410.
[22] SHARMA D, HIREMATH S S. Bio-inspired repeatable lattice structures for energy absorption: experimental and finite element study[J]. Composite Structures, 2022, 283: 115102.
[23] 黄江成, 肖正明, 刘涛, 等. 考虑分层梯度的筒状蜂窝基座隔振性能研究[J]. 振动与冲击, 2023, 42(5): 13-20.
[24] SONG K H, LI D W, ZHANG C D, et al. Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties[J]. Composite Structures, 2023, 304(2): 116452.
[25] SONG H, ZHANG C Y, WANG P Y, et al. A new type of hierarchical honeycomb in-plane impact study[J]. Materials (Basel), 2021, 14(8): 1917.
[26] WANG Z G, SUN Y Y, WU H, et al. Low velocity impact resistance of bio-inspired building ceramic composites with nacre-like structure[J]. Construction and Building Materials, 2018, 169: 851-858.
[27] WEI Z Q, XU X H. Gradient design of bio-inspired nacre-like composites for improved impact resistance[J]. Composites Part B: Engineering, 2021, 215: 108830.
[28] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure[J]. Materials Design, 2019, 163: 107532.
[29] GU X G, TAKAFFOLI M, HSIEH J A , et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters, 2016, 9(2): 317-323.
[30] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials, 2017, 29(28): 1700060.
[31] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068.
[32] JING S K, LI W, MA G H, et al. Enhancing mechanical properties of 3D printing metallic lattice structure inspired by bambusa emeiensis[J]. Materials, 2023, 16(7): 2545.
[33] ZHANG Z, SONG B, FAN J X, et al. Design and 3D printing of graded bionic metamaterial inspired by pomelo peel for high energy absorption[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2(1): 100068.
[34] YAN L L, ZHU K Y, ZHANG Y W, et al. Effect of absorbent foam filling on mechanical behaviors of 3D-printed honeycombs[J]. Polymers, 2020, 12(9): 2059.
[35] FENG B S, ZHANG M, QIN C, et al. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth[J]. Bioactive Materials, 2023, 22: 127-140.
[36] TAKEOKA Y, MATSUMOTO K, TANIGUCHI D, et al. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing[J]. PloS one, 2019, 14(3): e0211339.
[37] LIAN M F, SUN B B, HAN Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials, 2021, 274: 120841.
[38] HE J J, YUAN M Q, GONG Z, et al. Egg-shell structure design for stab resistant body armor[J]. Materials Today Communications, 2018, 16: 26-36.
[39] AGUIRRE T G, FULLER L, INGROLE A, et al. Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications[J]. Scientific Reports, 2020, 10(1): 18916.
[40] JIANG W, YAN L L, MA H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb[J]. Scientific Reports, 2018, 8(1): 4817. |