[1] 张强, 赵卫生, 李安睿. 特高压复合支柱绝缘子用内绝缘芯棒概况[J]. 玻璃钢/复合材料, 2018(9): 102-105. [2] 周曙琛, 刘西中, 朱勇, 等. 电站设备外绝缘全复合化趋势[J]. 电网与清洁能源, 2013, 29(8): 54-62. [3] 李静, 刘航, 于龙滨, 等. 环境因素对复合绝缘子积污特性的影响[J]. 科学技术与工程, 2023, 23(18): 7772-7778. [4] 冯国栋. 特高压换流站复合绝缘子设备动力特性及抗震性能影响研究[D]. 北京: 北方工业大学, 2020. [5] 任冠雄, 曹枚根, 冯国栋, 等. 特高压换流站直流场复合绝缘子动力特性测试研究[J]. 高压电器, 2020, 56(2): 77-84. [6] 张玥, 谢强, 何畅, 等. 特高压复合支柱绝缘子力学性能试验研究[J]. 南方电网技术, 2017, 11(11): 27-33, 67. [7] 黄亚州. 复合支柱绝缘子芯体的加工研究[J]. 新型工业化, 2021, 11(12): 238-240. [8] 何发亮. 大芯体压接式支柱复合绝缘子的研制[J]. 电瓷避雷器, 2020(2): 222-228. [9] 马斌, 罗兵, 李全文, 等. ±800 kV直流支柱复合绝缘子制造技术[J]. 南方电网技术, 2009, 3(4): 49-52. [10] 张星宇, 张小明, 陈雅琦, 等. 复合绝缘子芯棒环氧树脂材料裂解机理研究[J]. 电气技术, 2022, 23(2): 1-6, 25. [11] 梁曦东, 高岩峰. 复合绝缘子酥朽断裂研究(一): 酥朽断裂的主要特征、定义及判据[J]. 中国电机工程学报, 2016, 36(17): 4778-4786. [12] 樊宏斌, 石刘建, 游焕洋, 等. 复合绝缘子用超大直径一次拉挤芯棒配方研究设计[J]. 电瓷避雷器, 2023(2): 203-210. [13] 卢明, 胡文, 李黎, 等. 交流500 kV复合绝缘子芯棒断裂原因分析[J]. 电瓷避雷器, 2015(3): 23-28, 34. [14] LUTZ B, CHENG L, GUAN Z, et al. Analysis of a fractured 500 kV composite insulator-identification of aging mechanisms and their causes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5): 1723-1731. [15] AGHDAM M M, MORSALI S R. Effects of manufacturing parameters on residual stresses in SiC/Ti composites by an elastic-viscoplastic micromechanical model[J]. Computational Materials Science, 2014, 91: 62-67. [16] KUMOSA M, KUMOSA L, ARMENTROUT D. Failure analyses of nonceramic insulators. Part Ⅰ: brittle fracture characteristics[J]. IEEE Electrical Insulation Magazine, 2005, 21(3): 14-27. [17] KUMOSA M, KUMOSA L, ARMENTROUT D. Failure analyses of nonceramic insulators: part Ⅱ-the brittle fracture model and failure prevention[J]. IEEE Electrical Insulation Magazine, 2005, 21(4): 28-41. [18] 陈幸开. 碳纤维增强聚合物基复合材料拉挤工艺数值模拟与优化[D]. 哈尔滨: 哈尔滨工业大学, 2010. [19] 王嘉庆. CFRP拉挤工艺过程数值模拟及优化[D]. 哈尔滨: 哈尔滨工业大学, 2006. [20] 刘淼. CFRP拉挤工艺过程模拟与热应变分析[D]. 哈尔滨: 哈尔滨工业大学, 2007. [21] 张明. GFRP拉挤成型工艺过程固化度FEPG数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2006. [22] CARLONE P, PALAZZO G S, PASQUINO R. Pultrusion manufacturing process development: cure optimization by hybrid computational methods[J]. Computers & Mathematics with Applications, 2007, 53(9): 1464-1471. [23] SURATNO B R, YE L, MAI Y-W. Simulation of temperature and curing profiles in pultruded composite rods[J]. Composites Science and Technology, 1998, 58(2): 191-197. [24] LIU X L, CROUCH I G, LAM Y C. Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package[J]. Composites Science and Technology, 2000, 60(6): 857-864. [25] LIU X L. Numerical modeling on pultrusion of composite I beam[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(5): 663-681. [26] CARLONE P, PALAZZO G S, PASQUINO R. Pultrusion manufacturing process development by computational modelling and methods[J]. Mathematical and Computer Modelling, 2006, 44(7): 701-709. [27] VAJARI D A, LEGARTH B N, NIORDSON C F. Micromechanical modeling of unidirectional composites with uneven interfacial strengths[J]. European Journal of Mechanics- A/Solids, 2013, 42: 241-250. [28] LIU P F, LI X K. Explicit finite element analysis of failure behaviors of thermoplastic composites under transverse tension and shear[J]. Composite Structures, 2018, 192: 131-142. [29] HE Y. DSC and DEA studies of underfill curing kinetics[J]. Thermochemical Acta, 2001, 367-368: 101-106. [30] HARDIS R, JESSOP J L P, PETERS F E, et al. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 100-108. |