复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (3): 106-114.DOI: 10.19936/j.cnki.2096-8000.20250328.014

• 工程应用 • 上一篇    下一篇

大型复合材料风电叶片吊装过程受力与失效分析

鲁晓锋1,2, 刘宇轩3, 翟佳琪2, 张东坡3, 孟鑫淼3, 冯鹏1*   

  1. 1.清华大学 土木工程系,北京 100084;
    2.中材科技风电叶片股份有限公司,北京 100192;
    3.北京林业大学 土木工程系,北京 100083
  • 收稿日期:2023-12-28 出版日期:2025-03-28 发布日期:2025-04-21
  • 通讯作者: 冯鹏(1977—),男,博士,教授,主要从事新材料结构及新型结构方面的研究,fengpeng@tsinghua.edu.cn。
  • 作者简介:鲁晓锋(1986—),男,硕士,高级工程师,主要从事复合材料结构设计与力学分析方面的研究。
  • 基金资助:
    中国建材集团攻关专项(2021HX1617);江苏省碳达峰碳中和科技创新专项资金(BE2022008)

Study on the mechanical behavior and failure analysis of the sandwich shell in FRP wind turbine blade during lifting process

LU Xiaofeng1,2, LIU Yuxuan3, ZHAI Jiaqi2, ZHANG Dongpo3, MENG Xinmiao3, FENG Peng1*   

  1. 1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Sinoma Wind Power Blade Co., Ltd., Beijing 100192, China;
    3. Department of Civil Engineering, Beijing Forestry University, Beijing 100083, China
  • Received:2023-12-28 Online:2025-03-28 Published:2025-04-21

摘要: 为获得风电叶片蒙皮在柔性吊装工况中的力学响应,避免夹芯蒙皮因吊装应力集中而受损,开展足尺风电叶片单点柔性吊装测试,研究吊装过程中的位移变化和应变分布规律,获得吊装失效模式。基于试验结果对比分析节点约束加载和柔性吊带加载两种有限元模型的准确性,进一步开展参数分析,研究影响柔性吊装的关键因素。结果表明:单点柔性吊装失效区域为吊点附近,与实际吊装工况失效模式一致;节点约束加载和柔性吊带加载均能较为准确地预测整体位移分布,但节点约束加载时蒙皮应变分布与试验差异较大,柔性吊带加载的结果更为准确;参数分析结果表明,接触应力随接触面积的增加而显著减小,增加吊带宽度、弹性模量和界面粗糙度能够有效降低接触界面应力集中程度,而吊点高度对吊装应变和接触应力的影响不显著。

关键词: 柔性吊带, 风电叶片, 夹芯结构, 吊装试验, 有限元模拟, 复合材料

Abstract: In order to understand the mechanical response of the sandwich shell of wind turbine blade in lifting process using slings and to prevent damage to the sandwich shell caused by stress concentration during lifting, a full-scale wind turbine blade single-point flexible lifting test was conducted. The study investigated changes in displacement and the distribution of strains during lifting to determine the lifting failure mode. Based on the test results, the accuracy of two finite element models, namely node-restrained loading and flexible sling loading, was comparatively analyzed. Additionally, parameter analysis was performed to examine key factors influencing flexible lifting. The results indicate that the area of failure during single-point flexible lifting is near the lifting point, consistent with the failure mode under actual lifting conditions. Both node-restrained loading and flexible sling loading can predict overall displacement distribution quite accurately. However, the skin strain distribution during node-restrained loading differs from that at the lifting point, with significant experimental variations. The results from flexible sling loading are more precise. Parameter analysis revealed that contact stress significantly decreases with increased contact area. Expanding sling width, enhancing the elastic modulus and interface roughness effectively reduce stress concentration at the contact interface. Conversely, the height of sling point has no significant effect on the strain distribution and contact stress.

Key words: soft lifting sling, wind turbine blade, sandwich structure, lifting test, finite element analysis, composites

中图分类号: