复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (3): 30-38.DOI: 10.19936/j.cnki.2096-8000.20250328.005

• 基础与力学性能研究 • 上一篇    下一篇

蜂窝夹芯结构低速冲击后压-压疲劳性能研究

陈卫东1, 姚凯飞2, 王轩2*, 石强斌2   

  1. 1.中国航空工业集团公司 第一飞机设计研究院,西安 710089;
    2.中国民航大学 航空工程学院,天津 300300
  • 收稿日期:2023-11-20 出版日期:2025-03-28 发布日期:2025-04-21
  • 通讯作者: 王轩(1982—),男,博士,副教授,硕士生导师,研究方向为飞机复合材料结构损伤与维修,xuanwangaero2022@163.com。
  • 作者简介:陈卫东(1980—),男,学士,高级工程师,研究方向为飞机结构与系统设计。

Study on compression-compression fatigue behavior of honeycomb sandwich structure after low-velocity impact

CHEN Weidong1, YAO Kaifei2, WANG Xuan2*, SHI Qiangbin2   

  1. 1. The First Aircraft Institute, Aviation Industry Corporation of China, Xi'an 710089, China;
    2. Aeronautical Engineering Institute, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-11-20 Online:2025-03-28 Published:2025-04-21

摘要: 利用直径分别为25.4 mm、38.1 mm和50.8 mm的冲头对玻璃纤维平纹编织面板蜂窝夹芯结构进行1 mm凹坑深度的低速冲击,开展冲击后静态压缩和压-压疲劳试验,研究三种冲头直径下试件的剩余强度、条件疲劳极限、刚度退化、循环蠕变和破坏模式,揭示蜂窝夹芯结构低速冲击后压-压疲劳行为。结果表明:试件静态剩余强度随着冲头直径的增大而减小;当冲头直径为25.4 mm时,条件疲劳极限最大,为静态破环载荷的68.1%,当冲头直径为38.1 mm和50.8 mm时,条件疲劳极限约为静态破坏载荷的60%。循环刚度和循环蠕变均呈现“三阶段”的演变特征,在疲劳寿命期前10%,试件耗散能小幅减小,刚度在高周疲劳中增大,在低周疲劳中减小,循环蠕变现象显著;在疲劳寿命期90%之前,刚度大小稳定,循环蠕变现象有所减弱;在疲劳寿命期后10%,刚度减小,循环蠕变再次呈现显著的现象。试件的疲劳剩余强度分散性明显大于静态剩余强度分散性;试件在疲劳载荷下的破坏模式与在静态载荷下破坏模式相似。

关键词: 复合材料, 疲劳, 冲击后压缩, 蜂窝夹芯结构, 刚度演化

Abstract: The glass fiber plain woven panel honeycomb sandwich structure was subjected to low-velocity impact by punches with diameters of 25.4 mm, 38.1 mm and 50.8 mm at a notch 1 mm depth. The static compression and compression-compression fatigue tests after the impact under the punch of three diameters were carried out to study the residual strength, conditional fatigue limit, stiffness degradation, cyclic creep and failure mode of the specimens, revealing the compression-compression fatigue behavior of the honeycomb sandwich structure after low-velocity impact. The results show that the static residual strength decreases with the increase of punch diameter. When the punch diameter is 25.4 mm, the conditional fatigue limit is the maximum reaching 68.1% of the static failure load, while the counterparts in the cases of 38.1 mm and 50.8 mm are about 60% of the static failure load. Cyclic stiffness and cyclic creep both show a “three-stage” evolution feature during the whole fatigue life. In the first 10% of the fatigue life, the stiffness increases in high cycle fatigue, while in low cycle fatigue the stiffness decreases, and the cyclic creep occurs. Before 90% of the fatigue life, the stiffness remains stable, and the cyclic creep phenomenon is not significant. After 10% of the fatigue life, the stiffness decreases, and the cyclic creep phenomenon can be observed again. Compared with the static residual strength of the specimen, the dispersion of its fatigue residual strength is obviously larger. The failure mode of the specimen under fatigue load is similar to that under static load.

Key words: composites, fatigue, compression after impact, honeycomb sandwich structure, stiffness evolution

中图分类号: