[1] 卢天健, 刘涛, 邓子辰. 多孔金属材料多功能化设计的若干进展[J]. 力学与实践, 2008(1): 1-9. [2] 白梦婷. 周期性多孔结构的抗冲击性能数值研究[D]. 重庆: 重庆邮电大学, 2021. [3] 裴勇勇, 虞筱琛, 徐海兵, 等. Kagome点阵夹芯结构平压性能研究[J]. 复合材料科学与工程, 2023(5): 5-11. [4] 魏斌, 张冠军, 陈足君, 等. 多孔夹芯层组合方式对夹层板隔声特性影响研究[J]. 噪声与振动控制, 2021, 41(3): 228-233. [5] MOON K S, TAN E Y, HWANG J, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1: 223-228. [6] HOANG V-N, TRAN P, VU V-T, et al. Design of lattice structures with direct multiscale topology optimization[J]. Composite Structures, 2020, 252: 112718. [7] DONG G Y, TANG Y L, LI D W, et al. Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing[J]. Additive Manufacturing, 2020, 33: 101116. [8] 张鹏, 齐德兴, 夏勇, 等. 板状立方点阵超结构填充汽车吸能盒的抗冲击吸能特性[J]. 汽车安全与节能学报, 2020, 11(3): 287-295. [9] KOHSAKA K, USHIJIMA K, CANTWELL W J. Study on vibration characteristics of sandwich beam with BCC lattice core[J]. Materials Science Engineering: B, 2021, 264: 114986. [10] MINES R A W, TSOPANOS S, SHEN Y, et al. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60: 120-132. [11] XIAO M, LIU X L, ZHANG Y, et al. Design of graded lattice sandwich structures by multiscale topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113949. [12] BAYKASOĞLU A, BAYKASOĞLU C, CETIN E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes[J]. Thin-Walled Structures, 2020, 149: 106630. [13] YANG C X, LI Q M, WANG Y. Compressive properties of cuttlebone-like lattice (CLL) materials with functionally graded density[J]. European Journal of Mechanics-A Solids, 2021, 87: 104215. [14] LIU X Y, WADA T, SUZUKI A, et al. Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion[J]. Materials & Design, 2021, 199: 109416. [15] 吴伟, 张辉, 曹美文, 等. 仿生BCC结构的准静态压缩数值模拟及吸能性[J]. 高压物理学报, 2020, 34(6): 28-35. [16] SALARI-SHARIF L,GODFREY S,TOOTKABONI M, et al. The effect of manufacturing defects on compressive strength of ultralight hollow microlattices: a data-driven study[J]. Additive Manufacturing, 2018, 19: 51-61. [17] 徐向聪, 高佳丽, 郝云波. 304不锈钢多层梯度点阵结构压缩性能及梯度率影响研究[J]. 机械强度, 2023, 45(6): 1318-1325. [18] 邹田春, 管玉玺. 多层泡沫铝夹芯结构准静态压缩力学性能和吸能特性[J]. 稀有金属材料与工程, 2023, 52(11): 3818-3824. [19] 吴鹏, 鲍海英, 李爱群. 泡沫铝夹芯双管构件横向压缩吸能性能研究[J]. 包装工程, 2023, 44(23): 293-301. [20] 党文. 轴向荷载作用下波纹夹层圆柱壳结构吸能特性分析[D]. 西安: 西安建筑科技大学, 2023. [21] 周运. 多损伤复合下吸能盒压缩特性研究[D]. 重庆: 重庆交通大学, 2023. [22] 章娅菲, 闵世威, 王海涛, 等. TPU蜂窝结构压缩及吸能特性研究[J]. 塑性工程学报, 2023, 30(3): 113-122. [23] 邓二杰. 负刚度蜂窝结构的抗压强度及吸能性能研究[D]. 无锡: 江南大学, 2023. [24] 薛亚红, 陈继刚, 闫世程, 等. 二维机织复合材料力学分析中的周期性边界条件研究[J]. 纺织学报, 2016, 37(9): 70-77. [25] 任高晖. 基于BESO法的结构拓扑优化研究及应用[D]. 哈尔滨: 哈尔滨工程大学, 2016. [26] QI J Q, LI C, TIE Y, et al. Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading[J]. Materials & Design, 2021, 207: 109837. [27] 张洁皓, 段玥晨, 侯玉亮, 等. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5): 1411-1423. [28] JUSUF A, DIRGANTARA T, GUNAWAN L, et al. Crashworthiness analysis of multi-cell prismatic structures[J]. International Journal of Impact Engineering, 2015, 78: 34-50. [29] 杜常赞. 闭孔泡沫铝压缩性能实验与仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [30] 袁翊硕. 单胞及多胞金属结构轴向压缩变形失稳与能量吸收研究[D]. 徐州: 中国矿业大学, 2023. |