COMPOSITES SCIENCE AND ENGINEERING ›› 2025, Vol. 0 ›› Issue (6): 124-132.DOI: 10.19936/j.cnki.2096-8000.20250628.017
• REVIEW • Previous Articles Next Articles
KONG Dechuang
Received:
2024-05-16
Online:
2025-06-28
Published:
2025-07-24
CLC Number:
KONG Dechuang. Research progress on the modification of bismaleimide resin with allyl-based chemicals[J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(6): 124-132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://frp.cn/EN/10.19936/j.cnki.2096-8000.20250628.017
[1] FARHAN S, WANG R, ZHANG D, et al. Carbon foam with channel like pores prepared from reactive blended allyl novolac with bismaleimide using different cross-linking initiators[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 328-334. [2] IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science, 2017, 69: 1-21. [3] LIU P, QU C, WANG D, et al. High-performance bismaleimide resins with low cure temperature for resin transfer molding process[J]. High Performance Polymers, 2016, 29(3): 298-304. [4] XIONG X, CHEN P, REN R, et al. Cure mechanism and thermal properties of the phthalide-containing bismaleimide/epoxy system[J]. Thermochimica Acta, 2013, 559: 52-58. [5] YU Q, CHEN P, GAO Y, et al. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 336: 158-162. [6] LIU L N, FANG Z P, GU A J, et al. Improving tribological properties of bismaleimide nanocomposite filled with carbon nanotubes treated by atmospheric pressure filamentary dielectric barrier discharge[J]. Composites Part B: Engineering, 2011, 42(8): 2117-2122. [7] 颜帅, 夏益青, 朱俊龙, 等. 席夫碱化合物改性双马来酰亚胺树脂的制备及性能[J]. 塑料工业, 2024, 52(3): 69-75. [8] NING Y, LI D-S, JIANG L. Thermally stable and deformation-reversible eugenol-derived bismaleimide resin: synthesis and structure-property relationships[J]. Reactive and Functional Polymers, 2022,173: 105236. [9] XU W, YUAN L, LIANG G, et al. Developing non-halogen and non-phosphorous flame retardant bismaleimide resin with high thermal resistance and high toughness through building crosslinked network with Schiff base structure[J]. Polymers for Advanced Technologies, 2022, 33(5): 1642-1654. [10] 杨昊东, 周友, 唐安斌. 硅基低介质损耗树脂的合成及研究[J]. 绝缘材料, 2024, 57(4): 49-55. [11] 李成武. 含硅烯丙基化合物的制备及其对马来酰亚胺树脂的改性[D]. 绵阳: 西南科技大学, 2022. [12] 刘翔宇, 赵雪婷, 张成祥, 等. BMI树脂改性体系固化动力学及热力学性能[J]. 工程塑料应用, 2023, 51(8): 134-140. [13] ZHANG H, WANG L, YUAN Q, et al. Preparation and properties of bismaleimide resin blended with alkynyl-terminated modifiers[J]. High Performance Polymers, 2021, 33(10): 1192-1204. [14] 王开翔. 新型烯丙基化合物对双马来酰亚胺树脂体系改性的研究[D]. 大连: 大连理工大学, 2016. [15] 尹国强, 陈智园, 单瑞俊, 等. BMI/DABPA共混树脂体系的性能研究[J]. 高科技纤维与应用, 2023, 48(2): 21-27. [16] WU Y, CHEN G, GAO L, et al. Carborane-containing bismaleimide resins with excellent heat resistance and dimensional stability[J]. High Performance Polymers, 2020, 33(2): 176-183. [17] WANG D, XIONG X, REN R, et al. Characterization and properties of high-temperature resistant structure adhesive based on novel toughened bismaleimide resins[J]. High Performance Polymers, 2020, 33(5): 488-496. [18] 陈宁宇. 铁氧体/BMI复合材料的制备与吸波性能研究[D]. 南京: 南京航空航天大学, 2022. [19] 张子龙. 生物基烯丙基化合物改性双马来酰亚胺树脂的研究[D]. 无锡: 江南大学, 2022. [20] 杨海冬, 王德志, 曲春艳, 等. 航空航天用双马来酰亚胺胶粘剂的研究进展[J]. 化工新型材料, 2021, 49(10): 10-14. [21] NECHAUSOV S S, BULGAKOV B A, SOLOPCHENKO A V, et al. Thermosetting matrices for composite materials based on allyl/propagryl substituted novolac resins[J]. Journal of Polymer Research, 2016, 23(6): 114. [22] FINK J K. Reactive polymers: fundamentals and Applications[M]. New York: Elsevier Inc., 2018: 20. [23] 周洋龙. 双马来酰亚胺树脂基电子封装模塑料的制备及性能研究[D]. 无锡: 江南大学, 2021. [24] 章泽. 端烯丙基超支化聚合物增韧双马来酰亚胺树脂的制备及性能研究[D]. 武汉: 武汉理工大学, 2021. [25] 罗成, 唐国坊. 二烯丙基双酚A改性双马来酰亚胺树脂基覆铜板的研制[J]. 绝缘材料, 2014(2): 59-63. [26] 刘振, 贾园, 翟云会, 等. NH2-HBPSi/BMI树脂体系固化反应动力学及性能[J]. 塑料, 2021, 50(1): 78-83. [27] 陈争艳. 石墨烯基纳米复合粒子的制备及改性BMI摩擦性能研究[D]. 西安: 西北工业大学, 2020. [28] ZHANG Z, ZHANG K, XIE K, et al. Improvement in toughness and flame retardancy of bismaleimide/diallyl bisphenol A resin with a eugenol allyl ether-grafted polysiloxane[J]. European Polymer Journal, 2022, 180: 111594. [29] 贾园, 杨菊香, 曾莎, 等. SiO2-苯并噁嗪/双马来酰亚胺树脂的固化反应动力学[J]. 复合材料学报, 2021, 38(2): 536-544. [30] 朱小蒙. 双马来酰亚胺/氰酸酯共混树脂体系的制备及性能研究[D]. 哈尔滨: 黑龙江省科学院石油化学研究院, 2020. [31] 梁国正, 顾媛娟, 李秀仪, 等. 烯丙基线性酚醛树脂改性BMI的研究[J]. 纤维复合材料, 1996, 13(2): 22-24. [32] XIE K, ZHANG Z, ZHANG K, et al. Bismaleimide resin co-modified by allyl ether of resveratrol and allyl ether of eugenol-grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy[J]. Polymers for Advanced Technologies, 2024, 35(1):6191. [33] 李金亮, 高小茹. 改性双马来酰亚胺树脂预浸料性能研究[J]. 民用飞机设计与研究, 2020(1): 121-124. [34] JIANG H, WANG R, FARHAN S, et al. Properties and curing behavior of reactive blended allyl novolak with bismaleimide using dicumyl peroxide as a novel curing agent[J]. Journal of Applied Polymer Science, 2015, 132(15): 41829. [35] CAI H, SHI J, ZHANG X, et al. Characterization of mechanical, electrical and thermal properties of bismaleimide resins based on different branched structures[J]. Polymers, 2023, 15(3): 592. [36] 冯书耀, 颜红侠, 贾园, 等. 双酚A二烯丙基醚/双马来酰亚胺树脂固化动力学研究[J]. 中国胶粘剂, 2014, 23(6): 1-4. [37] 武迪蒙, 曾科, 韩勇, 等. 含均三嗪结构新型烯丙基醚化合物的合成及其对双马来酰亚胺树脂改性[C]//中国宇航学会. 复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(上). 北京: 中国宇航出版社, 2006: 6. [38] CHEN Y, GUO H, GENG C, et al. Effect of poly(ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide[J]. Journal of Materials Science: Materials in Electronics, 2018, 30(2): 991-1000. [39] 姜伟芳, 王林祥, 郑庆, 等. 加成型酚醛改性双马树脂及其复合材料性能[J]. 复合材料学报, 2023, 40(2): 741-752. [40] ZHANG Z, LI X, BAO Y, et al. Bismaleimide resins modified by an allyl ether of bio-based resveratrol with excellent halogen-free and phosphorus-free intrinsic flame retardancy and ultrahigh glass transition temperature[J]. Polymer Degradation and Stability, 2021, 193:109717. [41] 胡睿, 王汝敏, 王道翠, 等. 低温固化烯丙基酚氧树脂/双马来酰亚胺树脂的研究[J]. 粘接, 2013, 34(10): 52-54. [42] 胡睿, 王汝敏, 王道翠, 等. 烯丙基酚氧树脂/双马来酰亚胺改性树脂的制备及表征[J]. 粘接, 2013, 34(8): 30-33. [43] 江浩, 王汝敏, 等. 烯丙基酚氧树脂改性双马来酰亚胺体系的优化[J]. 粘接, 2014, 35(11): 29-34. [44] ZHOU X, QIU S, HE L, et al. Synthesis of star-shaped allyl phosphazene small molecules for enhancing fire safety and toughness of high performance BMI resin[J]. Chemical Engineering Journal, 2021, 425: 130655. [45] ZOU Q, XIAO F, GU S Q, et al. Toughening of bismaleimide resin based on the self-assembly of flexible aliphatic side chains[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16526-16531. [46] 延妮, 张丽影, 杨一璠, 等. 含芴基双马来酰亚胺树脂的热分解动力学及对环氧树脂的改性[J]. 塑料, 2019, 48(4): 15-20. [47] 李成武. 含硅烯丙基化合物的制备及其对马来酰亚胺树脂的改性[D]. 绵阳: 西南科技大学, 2022. [48] 段长兵, 王大伟, 王宝铭. 改性双马来酰亚胺树脂耐温性的研究[J]. 合成纤维, 2018, 47(9): 46-47. [49] 喻淼, 柳准, 董广帅, 等. 邻苯二甲酸二丙烯酯(DPA)改性双马来酰亚胺(BMI)/二烯丙基双酚A(DABPA)共混体的性能研究[J]. 安徽师范大学学报(自然科学版), 2016, 39(2): 140-143. [50] 李金亮, 迟波, 高小茹, 等. 缠绕用改性双马来酰亚胺树脂体系性能的研究[J]. 纤维复合材料, 2024, 41(1): 114-118. [51] JIN W, YUAN L, LIANG G, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14931-14944. [52] ZHU Y, YUAN L, LIANG G, et al. Green flame retarding bismaleimide resin with simultaneously good processing characteristics, high toughness and outstanding thermal stability based on a multi-functional organic boron compound[J]. Polymer Degradation and Stability, 2015, 118: 33-44. [53] ZHANG Y, WANG L, YUAN Q, et al. Preparation and properties of a bismaleimide resin modified with a propargyl compound for electron beam irradiation curing[J]. High Performance Polymers, 2024, 36(4): 269-279. [54] NING Y, LI D, WANG M, et al. Bio-based hydroxymethylated eugenol modified bismaleimide resin and its high-temperature composites[J]. Journal of Applied Polymer Science, 2021, 138(1): 49631. [55] 殷卫峰, 许永静, 曾耀德, 等. 氰酸酯-双马-碳氢复合树脂体系固化反应动力学及性能[J]. 绝缘材料, 2023, 56(10): 37-42. [56] 刘迅, 刘俊杰, 贾海斌, 等. 氧化石墨烯/多面体低聚倍半硅氧烷增强双马树脂合成及其性能表征[J]. 宇航材料工艺, 2023, 53(4): 48-54. [57] 姚志鹏, 曲芳, 姜恋, 等. 双马来酰亚胺树脂阻燃改性研究进展[J]. 合成技术及应用, 2021, 36(4): 23-27. [58] 孙亮亮, 张进, 李亚婷, 等. 双马来酰亚胺树脂增韧改性方法研究进展[J]. 化学推进剂与高分子材料, 2023, 21(4): 32-37. |
[1] | XIE Jiang, JIANG Yilun, LI Xuan, PAN Hanyuan, FENG Zhenyu. Failure behavior of fiber fabrics under the combined effects of blast shockwaves and fragments [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(6): 48-56. |
[2] | TIAN Xuezhao, LIU Peilin, ZHANG Hongwei, JIN Jiasheng. Experimental study on mechanical properties of carbon fiber and carbon fiber sheet concrete damaged by freeze-thaw cycles under impact load [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(6): 57-63. |
[3] | LUO Xinyu. Acoustic emission monitoring and damage mode recognition of continuous fiber reinforced 3D printed composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(6): 78-84. |
[4] | KANG Yuanchun, YANG Jianhua. Lightweight design of carbon fiber composite/aluminum wheels [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(6): 94-100. |
[5] | PENG Yanshuang, XUE Yi, YANG Zehao, ZHAO Qingzhi, ZHANG Wenqiang, FENG Yangyang, LIU Yong, ZHANG Hui, YU Jianyong. Study on structure and properties of carbon fiber/epoxy composites toughened with short aramid fiber veil interlayers [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 15-21. |
[6] | ZHANG Juanjuan, LI Shijie, CHEN Xianglin, WANG Tao, ZHU Keheng, MU Wenlong. Study on mechanical properties of flax/basalt hybrid fiber composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 31-37. |
[7] | XU Mingchao, TIAN Ali, WANG Qianyi, LUO Yi. Prediction of cohesive strength of composites based on a bidirectional stochastic micromechanical model [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 38-44. |
[8] | WANG Xin, CAO Jingyi, NI Aiqing, WANG Bing, LI Xiang, YIN Wenchang, WANG Jihui. Effect of ATH/EG on flame retardancy properties in phenolic resin composite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 50-58. |
[9] | ZHU Suian, ZHANG Hong, LI Xiangping, LIU Bingfei. Damping prediction of viscoelastic composite laminates based on macro and micro models [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 73-80. |
[10] | XIANG Shuanglin, ZHOU Xia. Gradient design and low-velocity impact response of arched anti-tetrachiral honeycomb sandwich structure [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 81-89. |
[11] | LIU Yakang, NI Wenbo, WANG Xuemei. Numerical and experimental research on riveting process of carbon fiber composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 90-95. |
[12] | FAN Qi, WANG Jing, YANG Bin, WANG Jihui, NI Aiqing. Textile reinforcement permeability prediction based on improved pore network model [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 96-107. |
[13] | XU Dongliang, LAI Jiuheng, YANG Huilan. Defect detection of pultrusion plate based on improved YOLOv5s [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 132-141. |
[14] | ZHANG Guishu, CHENG Sheng, WAN Jiajia, SHEN Bingfeng, ZHONG Li, LIU Yanyan. Exploration of damage failure analysis of civil aircraft composite components in quality optimization [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(5): 142-148. |
[15] | QIN Cheng, ZHA Yibin, ZHANG Lianhe, REN Hao, CHENG Yanan, LI Yongfeng, LIU Yong, ZHANG Hui. Study on the structure and properties of unidirectional carbon fiber fabric composite materials with different stitch densities and layers [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(4): 11-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||