[1] 张荣耀, 钱波, 刘钢. 连续碳纤维3D打印的路径规划研究进展[J]. 复合材料科学与工程, 2023(9): 112-120. [2] 邹东明, 单忠德, 刘丰, 等. 3D打印用连续纤维复合丝材分束浸渍工艺[J]. 工程塑料应用, 2023, 51(5): 56-61. [3] 任佳军, 孙颖, 鞠博文, 等. 纤维增强热塑性复合材料3D打印研究进展[J]. 复合材料科学与工程, 2023(11): 122-128. [4] 张聘, 王奉晨, 李玥萱, 等. 连续纤维增强复合材料3D打印技术现状及展望[J]. 航空制造技术, 2023, 66(16): 76-87. [5] 曹丰, 曾志勇, 黄建, 等. 连续纤维增强复合材料的3D打印工艺及应用进展[J]. 中国科学: 技术科学, 2023, 53(11): 1815-1833. [6] 姬程飞, 宋崇阳. 不同纤维增强对PZT/PVA复合材料性能影响的研究[J]. 塑料工业, 2024, 52(1): 114-122, 128. [7] 陈铄, 杜怡君, 全晓曦, 等. 低温等离子体刻蚀和接枝对芳纶纤维/环氧复合材料力学性能的影响[J]. 绝缘材料, 2023, 56(12): 69-77. [8] 梁起睿, 叶金蕊, 刘凯, 等. 特高压输电芳纶纤维复合绝缘拉杆孔隙缺陷数值模拟及工艺优化[J]. 工程力学, 2025, 42(5): 264-272. [9] 陈威, 张秋菊. 连续纤维增强热塑性复合材料3D打印研究进展[J]. 材料科学与工艺, 2022, 30(1): 21-34. [10] 於琳涛, 聂祥樊, 罗楚养. 基于熔融沉积成型的连续纤维增强复合材料3D打印研究进展[J]. 航空兵器, 2023, 30(2): 42-52. [11] 吴杰. 3D打印连续芳纶纤维增强聚醚酰亚胺复合材料的制备及性能研究[D]. 上海: 东华大学, 2023. [12] HOU Z, LIU P, TIAN X, et al. Hybrid effect of 3D-printed coaxial continuous hybrid fibre-reinforced composites[J]. Thin-Walled Structures, 2023, 188: 110820. [13] 孟云聪, 周光明, 蔡登安, 等. 连续芳纶纤维增强PLA复合材料3D打印技术成型缺陷及工艺优化方法研究[J]. 复合材料科学与工程, 2024(1): 98-104. [14] 宋星, 祝成炎, 李婷婷, 等. 芳纶增强复合材料波纹夹层3D打印与力学性能研究[J]. 合成纤维, 2019, 48(2): 29-32. [15] 刘良强, 肖学良, 董科, 等. 3D打印连续芳纶纤维增强聚乳酸复合材料的拉伸性能研究[J]. 塑料工业, 2019, 47(12): 27-30, 61. [16] 刘良强, 肖学良, 董科, 等. 3D打印连续芳纶纤维/聚乳酸波纹夹层结构复合材料的压缩性能研究[J]. 塑料工业, 2020, 48(1): 91-95. [17] WANG Y, SHI J, LIU Z. Bending performance enhancement by nanoparticles for FFF 3D printed nylon and nylon/Kevlar composites[J]. Journal of Composite Materials, 2020, 55: 1017-1026. [18] DANG Z, CAO J, PAGANI A, et al. Fracture toughness determination and mechanism for mode-Ⅰ interlaminar failure of 3D-printed carbon-Kevlar composites[J]. Composites Communications, 2023, 39: 101532. [19] 赵煜, 胡海洋, 药天运, 等. 3D打印GFRP层内失效力学行为的理论模型及细观机制[J]. 复合材料学报, 2024, 41(5): 2713-2731. [20] 张鑫, 郑锡涛, 杨甜甜, 等. 连续纤维增强3D打印复合材料工艺缺陷及其失效行为研究进展[J]. 复合材料学报, 2024, 41(9): 4478-4501. [21] 尹寒飞, 张鹏飞, 丁振君, 等. 碳/芳混杂编织复合材料拉伸变形及损伤声发射监测[J]. 玻璃钢/复合材料, 2018(10): 20-25. [22] ANDREW J J, ARUMUGAM V. Effect of patch hybridization on the compression behavior of patch repaired glass/epoxy composite laminates using acoustic emission monitoring[J]. Polymer Composites, 2018, 39(6): 1922-1935. [23] RAMASAMY N, ARUMUGAM V, SURESH K C. Effect of fiber surface modifications on the interfacial adhesion in kevlar fiber reinforced polymer composites[J]. Journal of Adhesion Science and Technology, 2022, 36(1): 54-74. [24] Al-NADHARI A, SENOL H, TOPAL S, et al. The effect of multiscale Kevlar/Glass hybridization on the mechanical properties and the damage evolution of 3D orthogonal woven composites under flexural and impact loadings[J]. Composites Part A: Applied Science and Manufacturing, 2023, 175: 107753. [25] WOO S-C, KIM T-W. High-strain-rate impact in Kevlar-woven composites and fracture analysis using acoustic emission[J]. Composites Part B: Engineering, 2014, 60: 125-136. [26] WOO S-C, KIM T-W. Peak frequency analysis via wavelet transform for impact damage mechanisms in woven composites[J]. Journal of Mechanical Science and Technology, 2018, 32: 2601-2612. [27] LIU J, WANG L, SONG Z Z, et al. Features of acoustic emission and micro-CT of 3D-printed continuous Kevlar fiber-reinforced composites during progressive damage under flexural load[J]. Journal of Applied Polymer Science, 2022, 139(23): e52296. [28] WANG J, ZHOU W, REN X, et al. A waveform-based clustering and machine learning method for damage mode identification in CFRP laminates[J]. Composite Structures, 2023, 312: 116875. [29] QIAO S, HUANG M, LIANG YJ, et al. Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission[J]. Polymer Composites, 2023, 44: 2427-2440. [30] LI L, LOMOV S V, YAN X, et al. Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites[J]. Composite Structures, 2014, 116: 286-299. |