[1] 张淦, 刘建超, 张承双. 纤维增强树脂基预浸料的制备技术及应用进展[J]. 炭素, 2022, 190(1): 27-32. [2] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16): 64-77. [3] 柯映林, 曲巍崴, 李江雄, 等. 碳纤维复合材料结构件自动铺放技术与装备研究进展[J]. 机械工程学报, 2023, 59(20): 401-435. [4] WANG Y, MAHAPATRA S, BELNOUE J P H, et al. Understanding tack behaviour during prepreg-based composites’ processing[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164:107284. [5] RAJAN S, SUTTON M A, SOCKALINGAM S, et al. Simulations and experiments for automated fiber placement of prepreg slit tape: wrinkle formation and fundamental observations[J]. Composites Part B: Engineering, 2020, 201: 108287. [6] 蒋诗才, 邢丽英, 陈祥宝. 复合材料预浸料自动铺带成型适宜性研究[J]. 武汉理工大学学报, 2009, 31(21): 44-47. [7] ASTM. Standard test method for tack of pressure-sensitive adhesives by rolling ball: ASTM D3121-17[S]. West Conshohocken, PA: ASTM, 2017. [8] 黄文宗, 孙容磊, 连海涛, 等. 预浸料的铺放适宜性评价(一)——粘性篇[J]. 玻璃钢/复合材料, 2013(6): 3-11. [9] COLE K C, NOЁL D, HECHLER J, et al. Room-temperature aging of Narmco 5208 carbon-epoxy prepreg. Part Ⅱ: physical, mechanical, and nondestructive characterization[J]. Polymer Composites, 2010, 12(3): 203-212. [10] BUDELMANN D, SCHMIDT C, MEINERS D. Prepreg tack: a review of mechanisms, measurement, and manufacturing implication[J]. Polymer Composites, 2020, 41(9): 3440-3458. [11] BUDELMANN D, SCHMIDT C, MEINERS D. Adhesion-cohesion balance of prepreg tack in thermoset automated fiber placement. Part 1: adhesion and surface wetting[J]. Composites Part C: Open Access, 2021, 6: 100204. [12] CHOONG G Y H, ENDRUWEIT A, DE FOCATIIS D S A. Analysis of contact area in a continuous application-and-peel test method for prepreg tack[J]. International Journal of Adhesion and Adhesives, 2021, 107: 102849. [13] AWAJA F. Autohesion of polymers[J]. Polymer, 2016, 97: 387-407. [14] BUDELMANN D, SCHMIDT C, STEUERNAGEL L, et al. Adhesion-cohesion balance of prepreg tack in thermoset automated fiber placement. Part 2: ply-ply cohesion through contact formation and autohesion[J]. Composites Part C: Open Access, 2023, 12: 100396. [15] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(3): 423-434. [16] SZPOGANICZ E, DEMLEITNER M, HÜBNER F, et al. Phenolic prepregs for automated composites manufacturing-correlation of rheological properties and environmental factors with prepreg tack[J]. Composites Science and Technology, 2022, 218: 109188. [17] WANG Y, MINH D-Q, AMBERG G. Dynamic wetting of viscoelastic droplets[J]. Physical Review E, 2015, 92(4): 043002. [18] KANSAL M, BERTIN V, DATT C, et al. Viscoelastic wetting: Cox-Voinov theory with normal stress effects[J]. Journal of Fluid Mechanics, 2024, 985: A17. [19] EVERAERTS A I, CLEMENS L M. Chapter 11-pressure sensitive adhesives[M]//DILLARD D A, POCIUS A V, CHAUDHURY M. Adhesion Science and Engineering. Amsterdam: Elsevier Science B.V., 2002: 465-534. [20] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. Experimental determination and control of prepreg tack for automated manufacture[J]. Plastics, Rubber and Composites, 2011, 40(6-7): 363-368. [21] CIAVARELLA M, PAPANGELO A. A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces[J]. Physical Mesomechanics, 2018, 21(1): 67-75. [22] BUDELMANN D, SCHMIDT C, MEINERS D. Tack of epoxy resin films for aerospace-grade prepregs: influence of resin formulation, B-staging and toughening[J]. Polymer Testing, 2022, 114: 107709. [23] BUDELMANN D, DETAMPEL H, SCHMIDT C, et al. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping processes[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 308-316. [24] THÉBAULT M, KUTUZOVA L, JURY S, et al. Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles[J]. Journal of Renewable Materials, 2020, 8(6): 603-630. [25] LICHTINGER R, HÖRMANN P, STELZL D, et al. The effects of heat input on adjacent paths during automated fibre placement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 387-397. [26] LARSON N, SMITH E, GRUBB C, et al. Developing a procedure for prepreg tack characterization[C]//Proceeding of CAMX 2019. ANAHEIM, CA: 2019. [27] DUBOIS O, LE CAM J B, BÉAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics, 2010, 50(5): 599-606. [28] ENDRUWEIT A, CHOONG G Y H, GHOSE S, et al. Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 295-306. [29] NGUYEN C D, DELISLE D. First ply tack of an automated fibre placement process-influence of heatabale mould surface, release films and process parameters[C]//Proceedings of the SAMPE Europe Conference 2017. Stuttgart, Germany, F: 2017. [30] HÜBNER F, MEUCHELBÖCK J, WOLFF-FABRIS F, et al. Fast curing unidirectional carbon epoxy prepregs based on a semi-latent hardener: the influence of ambient aging on the prepregs Tg0, processing behavior and thus derived interlaminar performance of the composite[J]. Composites Science and Technology, 2021, 216:109047. [31] MÜLLER M, HRABĚ P, CHOTĚBORSKý R, et al. Evaluation of factors influencing adhesive bond strength[J]. Research in Agricultural Engineering, 2006, 52(1): 30-37. [32] WOHL C J, PALMIERI F L, FORGHANI A, et al. Tack measurements of prepreg tape at variable temperature and humidity[C]//Proceedings of the CAMX 2017. Orlando, United States, F: 2017. [33] FORGHANI A, HICKMOTT C, BEDAYAT H, et al. Simulating prepreg tack in afp process[C]//Proceedings of the SAMPE. Seattle, F: 2017. [34] ZU L, XIA X, ZHANG Q, et al. Influence and optimization of parameters of prepreg viscosity during placement[J]. Chinese Journal of Aeronautics, 2022, 35(4): 438-449. [35] 舒展, 彭啸, 李发飞, 等. 基于探针试验的预浸料黏性内聚力模型[J]. 航空学报, 2018, 39(2): 280-292. [36] AHN K J, SEFERIS J C, PELTON T, et al. Analysis and characterization of prepreg tack[J]. Polymer Composites, 1992, 13(3): 197-206. [37] BELHAJ M, DODANGEH A, HOJJATI M. Experimental investigation of prepreg tackiness in automated fiber placement[J]. Composite Structures, 2021, 262: 113602. [38] 彭啸, 舒展, 都涛, 等. 面向铺放工艺的预浸料剥离仿真与试验验证[J]. 航空学报, 2018, 39(12): 387-400. [39] 张鹏, 孙容磊, 连海涛, 等. 自动铺带铺层贴合形成机制[J]. 复合材料学报, 2014, 31(1): 40-48. [40] 舒展. 预浸料黏性行为表征及其铺放工艺参数调控[D]. 杭州: 浙江大学, 2018. [41] 蔡立成, 彭啸, 汪海晋, 等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报, 2021, 38(6): 1795-1808. [42] 李勇, 王敏, 肖军, 等. NY9200GA树脂体系预浸料自动铺放粘结性工艺研究[J]. 南京航空航天大学学报, 2015, 47(4): 571-578. [43] 周煦洁, 肖军, 李勇, 等. 面向高速铺放预浸料层间粘结性能研究[J]. 航空科学技术, 2016, 27(11): 12-18. [44] 石佩洛, 梁洪涛, 白雪莲, 等. 树脂η*和Tg对C/E预浸料黏性的表征[J]. 宇航材料工艺, 2016, 46(6): 79-81. [45] 王雪明, 刘秀, 崔郁, 等. 高性能预浸料粘性定量测试评价技术浅析[J]. 纤维复合材料, 2023, 40(3): 40-43. [46] 缑建杰, 杨扬, 陈代鑫, 等. 多因素作用下自动铺丝预浸料黏性变化规律[J]. 复合材料科学与工程, 2021(9): 38-45. [47] 宋清华, 王跃全, 石甲琪, 等. 环境时效对预浸料自动铺放工艺粘性的影响[J]. 纤维复合材料, 2021, 38(4): 28-32. |