复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (9): 35-41.DOI: 10.19936/j.cnki.2096-8000.20250928.005

• 基础与力学性能研究 • 上一篇    下一篇

纳米碳酸钙改性前端聚合双环戊二烯树脂性能研究

李科辉, 张月尧, 宋龙杰, 杨莉玲, 陈丁丁, 邢素丽, 尹昌平*, 唐俊*   

  1. 国防科技大学 空天科学学院,长沙410073
  • 收稿日期:2025-03-27 发布日期:2025-10-23
  • 通讯作者: 尹昌平(1980—),男,博士,教授,研究方向为高分子复合材料,ychangping@nudt.edu.cn。
    唐俊(1990—),男,博士,副教授,研究方向为高分子复合材料,jun.tang@nudt.edu.cn。
  • 作者简介:李科辉(2001—),男,硕士,研究方向为高分子复合材料。
  • 基金资助:
    国防科技大学空天科学学院青年人才自主研究培育项目(KY0505072210)

Effects of nano calcium carbonate on the properties of frontal-polymerized dicyclopentadiene resin

LI Kehui, ZHANG Yueyao, SONG Longjie, YANG Liling, CHEN Dingding, XING Suli, YIN Changping*, TANG Jun*   

  1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2025-03-27 Published:2025-10-23

摘要: 本文研究了纳米碳酸钙对前端聚合双环戊二烯树脂工艺性能、耐热性能及其力学性能的影响。结果表明,纳米碳酸钙的加入显著优化了双环戊二烯树脂的工艺窗口,其起始固化温度与峰值温度分别降低了16.16 ℃与13.92 ℃,室温凝胶时间延长至2.5 h以上。同时,纳米碳酸钙通过抑制高分子链段运动,将树脂的玻璃化转变温度(Tg)提升至127.9 ℃,增幅达33.79%。力学性能方面,当纳米碳酸钙含量为3wt%~4wt%时,树脂浇注体弯曲强度、拉伸模量与冲击强度分别达到60.53 MPa、1.90 GPa与4.84 kJ/m2,与纯树脂相比,分别提升13.27%、57.02%与9.09%,但过量纳米碳酸钙(>5wt%)会因为团聚形成的缺陷引发应力集中,从而导致力学性能下降。本研究可为设计兼具优良工艺性能和热机械性能的高性能前端聚合聚合物复合材料提供参考。

关键词: 纳米碳酸钙, 前端聚合, 聚双环戊二烯, 耐热性能, 力学性能, 工艺性能, 复合材料

Abstract: This study was systematically conducted to investigate the effects of nano-CaCO3 modification on the processing, thermal stability, and mechanical properties of frontal-polymerized dicyclopentadiene (DCPD) resin. The results demonstrate that the incorporation of nano-CaCO3 significantly optimized the processing window of DCPD resin. Thus, the initial curing temperature and peak curing temperature are decreased by 16.16 ℃ and 13.92 ℃, respectively, while the room-temperature gelation time extends beyond 2.5 h. Furthermore, as nano-CaCO3 suppressed the mobility of molecular chain, the glass transition temperature (Tg) is elevated to 127.9 ℃, which is a 33.79% increase over that of the pure resin. Mechanically, the flexural strength, tensile modulus, and impact strength are improved to 60.53 MPa, 1.90 GPa and 4.84 kJ/m2 with the optimal nano-CaCO3 content (3wt%~4wt%), representing improvements of 13.27%, 57.02% and 9.09%, respectively. However, due to the stress concentration caused by the agglomeration of nano-CaCO3 particles at high content (>5wt%), the mechanical properties of the DCPD resin are degraded. This work could provide insights for designing high-performance frontal-polymerized polymer composites with tailored processability and thermal-mechanical properties.

Key words: Nano-CaCO3, frontal polymerization, dicyclopentadiene resin, thermal stability, mechanical properties, process optimization, composites

中图分类号: