复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (10): 53-59.DOI: 10.19936/j.cnki.2096-8000.20251028.008

• 防弹防爆复合材料 • 上一篇    下一篇

石墨烯对超高分子量聚乙烯纤维蠕变行为的影响规律研究

蒋波1,2,3, 王政委1,2, 成凤1,2, 赵丽丽1,2, 王庆娜1,2, 曹贻儒1,2, 李杰1,2, 苏家凯1,2*   

  1. 1.山东南山智尚科技股份有限公司,龙口 265706;
    2.烟台市功能性纤维及纺织品重点实验室,龙口 265700;
    3.烟台南山学院,龙口 265700
  • 收稿日期:2025-06-10 出版日期:2025-10-28 发布日期:2025-12-02
  • 通讯作者: 苏家凯(1978—),男,学士,高级工程师,研究方向为高性能纤维及功能性纤维,sjk1016@163.com。
  • 作者简介:蒋波(1978—),男,博士,工程师,研究方向为超高分子量聚乙烯纤维制造与改性。
  • 基金资助:
    南山控股科研项目(2025-3-4)

Study on the influence of graphene on the creep behavior of ultra-high molecular weight polyethylene fibers

JIANG Bo1,2,3, WANG Zhengwei1,2, CHENG Feng1,2, ZHAO Lili1,2, WANG Qingna1,2, CAO Yiru1,2, LI Jie1,2, SU Jiakai1,2*   

  1. 1. Shandong Nanshan Zhishang Technology Co., Ltd., Longkou 265706, China;
    2. Yantai Key Laboratory of Functional Fibers and Textiles, Longkou 265700, China;
    3. Yantai Nanshan University, Longkou 265700, China
  • Received:2025-06-10 Online:2025-10-28 Published:2025-12-02

摘要: 通过双螺杆挤出机制备了石墨烯含量为0%~15%的超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,UHMWPE)纤维,采用恒定载荷蠕变试验测定了纤维的蠕变伸长率与蠕变速率,利用Burgers模型对蠕变行为进行了预测。结果表明,当石墨烯含量从0%增加到8%时,纤维抗蠕变性能不断提高。在载荷加载的初始阶段(7.5 s内),蠕变伸长率ε7.5从2.23%降至1.41%,蠕变速率dε7.5从0.28 s-1下降到了0.19 s-1;在载荷稳定阶段,蠕变伸长率ε12 000从7.95%降至3.86%,蠕变速率dε12 000从3.67×10-4 s-1下降到了1.83×10-4 s-1。当含量超过8%后,石墨烯会因团聚导致分散不均,纤维抗蠕变性能降低,团聚还抑制了聚乙烯大分子伸直链晶的生成,纤维第一和第二吸热峰峰值温度下降。Burgers模型可以很好地预测不同石墨烯含量纤维的蠕变行为,预测结果与试验结果的均方误差低于0.06。随着石墨烯含量的增加,模型弹性模量EM,EK以及黏度ηM,ηK参数明显增加,验证了石墨烯对分子链滑移的抑制作用。随着石墨烯含量的增加,纤维弹性模量从纯纤维时的130.3 GPa增加到了15%石墨烯含量时的210.3 GPa,当石墨烯含量超过8%时,纤维弹性模量试验值低于Mori-Tanaka理论预测结果。

关键词: 超高分子量聚乙烯纤维, 石墨烯, Burgers模型, 蠕变, Mori-Tanaka理论, 预测, 复合材料

Abstract: UHMWPE fibers with graphene content ranging from 0% to 15% were prepared via a twin-screw extruder. The creep strain and creep rate of the fibers were measured using constant-load creep tests, and the creep behavior was predicted using the Burgers model. The results showed that as the graphene content increased from 0% to 8%, the fiber’s creep resistance improved. Within the initial 7.5 s of loading, the creep strain ε7.5 decreased from 2.23% to 1.41%, and the creep rate dε7.5 dropped from 0.28 s-1 to 0.19 s-1. During the stable loading stage, the creep strain ε12 000 fell from 7.95% to 3.86%, and the creep rate dε12 000 decreased from 3.67×10-4 s-1 to 1.83×10-4 s-1. However, when the graphene content exceeded 8%, fiber agglomeration reduced the creep resistance. Agglomeration also inhibited the formation of extended-chain crystals of polyethylene macromolecules, causing the peak temperatures of the fiber’s first and second endothermic peaks to decline. The Burgers model could predict the creep behavior of fibers with different graphene contents well, with a mean square error between the predicted and experimental results below 0.06. As the graphene content increased, the model’s elastic modulus (EM, EK) and viscosity (ηM, ηK) parameters rose significantly, confirming graphene’s inhibition on polymer chain slippage. As the graphene content increased, the fiber’s elastic modulus rose from 130.3 GPa for pure fibers to 210.3 GPa for fibers with 15% graphene content. When the graphene content exceeded 8%, the experimental values of fiber elastic modulus were lower than the theoretical predictions of the Mori-Tanaka model.

Key words: ultra-high molecular weight polyethylene fiber, graphene, Burgers model, creep, Mori-Tanaka theory, prediction, composites

中图分类号: