[1] SHELLY D, LEE Y S, PARK J S. Compatibilization of ultra-high molecular weight polyethylene (UHMWPE) fibers and their composites for superior mechanical performance: a concise review[J]. Composites Part B: Engineering, 2024, 275: 111294. [2] 徐建军. 超高分子量聚乙烯纤维的工业化制备和构效关系综述[J]. 高分子通报, 2024, 37(6): 776-791. [3] HE J, WANG Y, QIAN Y, et al. Surface modification of ultra-high-molecular-weight polyethylene and applications: a review[J]. Polymers, 2024, 16(23): 3431. [4] 莫根林, 刘静, 金永喜, 等. 超高分子量聚乙烯纤维防护机理研究综述[J]. 兵器装备工程学报, 2021, 42(10): 23-28. [5] YANG C, ZHANG J, YUE H, et al. The low friction coefficient and high wear resistance UHMWPE: the effect of pores on properties of artificial joint materials[J]. Lubricants, 2025, 13(1): 31. [6] 叶卓然 ,罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9): 4286-4309. [7] YANG G X, MENG G L, GAO H, et al. Micromorphology and mechanical properties of UHMWPE/CNF composites under accelerated aging[J]. Polymer Composites, 2022, 43(6): 3716-3730. [8] YUAN H B, LONG C, YU J R, et al. Synthesis of granular hydroxy-functionalized ultra-high-molecular-weight polyethylene and its fiber properties[J]. Advanced Fiber Materials, 2022, 4(4): 786-794. [9] HEIDI F M, CHRISTIAN P E, ØSTEN J. Temporary-creep and postcreep properties of aquaculture netting materials with UHMWPE fibers[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(3): 031201. [10] SHANKAR H V, ZAINAB A, LIVA P, et al. Time-dependent properties of newly developed multiscale UHMWPE composites[J]. Polymer Testing, 2022, 105: 107400. [11] 郑晗, 孙勇飞, 王新威. 不同改性方法对超高分子量聚乙烯纤维蠕变行为的影响[J]. 工程塑料应用, 2024, 52(8): 140-147. [12] 代栋梁. UHMWPE纤维的辐照交联改性及抗蠕变性能研究[D]. 上海: 东华大学, 2017. [13] 刘群. 超高分子量聚乙烯的交联改性研究[D]. 上海: 东华大学,2018. [14] 邵钰淞. 抗蠕变超高分子量聚乙烯纤维的研制[D]. 上海: 东华大学, 2018. [15] 李志尧. 超高分子量聚乙烯纤维在线制备及蠕变性能调控研究[D]. 武汉: 武汉纺织大学, 2024. [16] 刘晓晓. 碳纳米管/超高分子量聚乙烯纤维的表面改性及性能研究[D]. 杭州: 浙江理工大学, 2013. [17] 何曼君, 张红东, 陈维孝, 等. 高分子物理[M]. 上海: 复旦大学出版社, 2021. [18] ZHANG X, LI W, LI Y. Stiffness prediction of nanofiber reinforced polymer composites: a micromechanics framework integrating load transfer theory and Mori-Tanaka method[J]. Composites Science and Technology, 2025, 269: 111238. [19] OGIERMAN W. Data-driven mean-field homogenization: enhancing the accuracy of the mori-tanaka method[J]. Composite Structures, 2025, 358: 118985. |