复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (6): 57-63.DOI: 10.19936/j.cnki.2096-8000.20250628.008

• 基础与力学性能研究 • 上一篇    下一篇

冲击荷载作用下冻融循环损伤碳纤维及碳纤维布混凝土力学性能试验研究

田学昭1, 刘沛林2, 张宏伟3, 金家胜4   

  1. 1.中国二十二冶集团有限公司,石家庄 050000;
    2.天津大学 土木工程系,天津 300072;
    3.中国建筑科学研究院有限公司,北京 100013;
    4.乌鲁木齐职业大学 应用工程学院,乌鲁木齐 830002
  • 收稿日期:2024-04-22 出版日期:2025-06-28 发布日期:2025-07-24
  • 作者简介:田学昭(1972—),男,学士,高级工程师,主要从事建筑施工技术质量管理方面的工作,tianxuezhao20240206@163.com。

Experimental study on mechanical properties of carbon fiber and carbon fiber sheet concrete damaged by freeze-thaw cycles under impact load

TIAN Xuezhao1, LIU Peilin2, ZHANG Hongwei3, JIN Jiasheng4   

  1. 1. China 22MCC Group Co., Ltd., Shijiazhuang 050000, China;
    2. Department of Civil Engineering, Tianjin University, Tianjin 300072, China;
    3. China Building Research Institute Co., Ltd., Beijing 100013, China;
    4. College of Applied Engineering, Urumqi Vocational University, Urumqi 830002, China
  • Received:2024-04-22 Online:2025-06-28 Published:2025-07-24

摘要: 基于试验探究碳纤维应用方式及冲击荷载作用对冻融损伤混凝土力学性能影响规律,利用霍普金森压杆(SHPB)对不同冻融循环次数(0,25,50,75,100次)作用后四种混凝土(素混凝土、碳纤维混凝土、碳纤维布混凝土、碳纤维与纤维布混凝土)试件开展不同加载率下的冲击压缩试验,分析冻融循环次数、碳纤维应用方式及加载率对混凝土动态应力-应变曲线、峰值应力、韧性及耗能效果影响规律。结果表明:①冻融循环0次、0.3 MPa冲击气压下,碳纤维混凝土、碳纤维布混凝土及碳纤维与纤维布混凝土峰值应力是素混凝土峰值应力的1.30,1.63,1.95倍,碳纤维及碳纤维布均能够有效提升混凝土动态抗压强度,碳纤维布提升效果更显著;②相较于未冻融试件,冻融循环25,50,75,100次时,素混凝土试件峰值应力降幅3.93%、19.01%、28.52%、41.95%,四种混凝土试件峰值应力均与冻融循环次数间呈线性负相关;③0.3 MPa冲击气压、冻融循环100次时,碳纤维及纤维布混凝土、碳纤维布混凝土、碳纤维混凝土试件韧性分别为素混凝土韧性的3.78,2.44,1.81倍,碳纤维及碳纤维布不仅能够增强试件韧性,同时能够增强试件的抗冻性能;④冻融循环25,50,75,100次时,碳纤维及纤维布混凝土试件单位体积耗散能降幅分别为1.70%、3.64%、6.07%、12.14%,素混凝土试件单位体积耗散能降幅分别为21.43%、35.71%、53.57%、73.21%,碳纤维对混凝土抗冻融损伤存在一定的提升作用。

关键词: 冻融循环, 冲击荷载, 碳纤维, 混凝土, 动态峰值应力, 韧性, 能量耗散, 复合材料

Abstract: Based on the experiment, the application mode of carbon fiber and the effect of impact load on the mechanical properties of freeze-thaw damaged concrete were investigated. The impact compression tests of four kinds of concrete (plain concrete, carbon fiber concrete, carbon fiber cloth concrete, carbon fiber and fiber cloth concrete) under different loading rates were carried out by using Hopkinson pressure rod (SHPB) after different freeze-thaw cycles (0, 25, 50, 75, 100). The influences of the number of freeze-thaw cycles, carbon fiber reinforcement mode and loading rate on the dynamic stress-strain curve, peak stress, toughness and energy consumption of concrete materials were analyzed. The results show that: ①the peak stress of carbon fiber concrete, carbon fiber cloth concrete and carbon fiber and fiber cloth concrete is 1.30, 1.63, 1.95 times of plain concrete under 0 freeze-thaw cycles and 0.3 MPa impact pressure, both carbon fiber and carbon fiber cloth can effectively improve the dynamic compressive strength of concrete materials, and the lifting effect of carbon fiber cloth is more significant; ②compared with non-freezing-thawing specimens, the peak stress of plain concrete specimens with freezing-thawing cycles of 25, 50, 75 and 100 times decreased by 3.93%, 19.01%, 28.52% and 41.95%, and the peak stress of four kinds of concrete specimens was linearly and negatively correlated with the number of freezing-thawing cycles; ③when the impact pressure was 0.3 MPa and the freeze-thaw cycle was 100 times, the toughness of the samples of carbon fiber and fiber cloth concrete, carbon fiber cloth concrete and carbon fiber concrete was 3.78, 2.44 and 1.81 times that of plain concrete, respectively, carbon fiber and carbon fiber cloth can not only enhance the toughness of the specimen, but also enhance the freezing resistance of the specimen; ④during freeze-thaw cycles of 25, 50, 75 and 100 times, the unit volume dissipative energy of carbon fiber and fiber cloth concrete specimens decreased by 1.70%, 3.64%, 6.07% and 12.14%, respectively, and the unit volume dissipative energy of raw concrete specimens decreased by 21.43%, 35.71%, 53.57% and 73.21%, the presence of carbon fiber has a certain enhancement effect on the freeze-thaw damage resistance of concrete.

Key words: freeze-thaw cycle, impact load, carbon fiber, concrete, dynamic peak stress, toughness, energy dissipation, composites

中图分类号: