复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (6): 1-9.DOI: 10.19936/j.cnki.2096-8000.20250628.001

• 基础与力学性能研究 •    下一篇

GFRP管螺旋筋复合约束混凝土柱轴压性能试验研究

经承贵1, 武彤1, 赵林1, 陈宗平2*   

  1. 1.广西科技大学 土木建筑工程学院,柳州 545006;
    2.广西大学 土木建筑工程学院,南宁 530004
  • 收稿日期:2024-04-17 出版日期:2025-06-28 发布日期:2025-07-24
  • 通讯作者: 陈宗平(1975—),男,博士,教授,研究方向为海洋及近海混凝土结构、钢-混凝土组合结构等,zpchen@gxu.edu.cn。
  • 作者简介:经承贵(1989—),男,博士,讲师,研究方向为钢管混凝土结构、新型混凝土结构、高性能复合材料结构。
  • 基金资助:
    广西科技基地和人才专项(AD19245131);广西自然科学基金(2019GXNSFBA245071);广西科技大学博士基金项目(校科博19z41);国家自然科学基金项目(51578163);广西高校防灾减灾与预应力技术重点实验室资助课题(GXKDTJ017)

Experimental investigation on the axial compressive behavior of GFRP-pipe-encased concrete columns with spiral reinforcement

JING Chenggui1, WU Tong1, ZHAO Lin 1, CHEN Zongping2*   

  1. 1. School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, China;
    2. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Received:2024-04-17 Online:2025-06-28 Published:2025-07-24

摘要: 为研究GFRP管螺旋筋复合约束混凝土柱的轴压性能,以混凝土强度、螺旋筋屈服强度、螺旋筋配箍率和纵筋配筋率为变化参数,制作了29个试件并开展轴心受压试验,观察了试件的破坏过程,总结了试件的不同破坏模式,获取了荷载-位移和荷载-应变曲线,探究了不同变化参数对试件轴压性能的影响规律。结果表明:试件均因GFRP管的断裂和核心混凝土的压碎或螺旋筋的断裂而破坏;GFRP管螺旋筋复合约束混凝土柱的极限承载力随混凝土强度提高而提高,变形能力随混凝土强度提高而减弱;随着螺旋筋屈服强度和螺旋筋配箍率的提升,GFRP管螺旋筋复合约束混凝土柱的承载力和延性均增大;纵筋配筋率对GFRP管螺旋筋复合约束混凝土柱的影响较小;GFRP管可使钢筋混凝土柱的轴压峰值应力提高30%以上,延性系数提高90%以上;螺旋筋的加入可使GFRP管混凝土柱的轴压峰值应力提高10%以上,延性提高20%以上。最后,建立了GFRP管螺旋筋复合约束混凝土柱的轴压承载力计算公式,其计算结果与试验结果吻合较好。

关键词: GFRP管, 螺旋筋, 约束混凝土, 高强钢丝, 承载力

Abstract: This study aims to the axial compression performance of GFRP pipe spiral reinforcement composite confined concrete columns. A total of 29 specimens were fabricated and subjected to axial compression tests, with variations in concrete strength, yield strength of spiral reinforcement, stirrup ratio of spiral reinforcement, and longitudinal reinforcement ratio as parameters. The failure process of the specimens was observed, and the failure modes of different specimens were summarized. The load-displacement and load-strain curves were obtained. The influence of various parameters on the axial compression performance of specimens was investigated. The test results indicate that specimens fail due to the fracture of the GFRP tube, the crushing of the core concrete, or the breakage of the spiral reinforcement. Ultimate load-bearing capacity of GFRP tube spiral reinforced concrete columns increases with rising concrete strength, while their deformability diminishes. With increasing yield strength and stirrup ratio of spiral reinforcement, both the ultimate load-bearing capacity and shape-shifting capability of GFRP-pipe spiral reinforced concrete columns enhance. The longitudinal reinforcement ratio has minimal influence on these columns. GFRP pipe can enhance the axial compression peak stress of reinforced concrete columns by over 30%, and increase the ductility coefficient by over 90%. The addition of spiral reinforcement can increase the axial compressive peak stress of GFRP-pipe concrete columns by over 10%, and enhance its ductility by over 20%. Finally, a formula for calculating the axial compression bearing capacity of GFRP-pipe spiral reinforced composite confined concrete columns is proposed, and the calculated results closely align with the experimental findings.

Key words: GFRP tube, spiral reinforcement, confined concrete, high strength steel wire, bearing capacity

中图分类号: