[1] WANG P, GONG G C, CAI L Q, et al. Investigation of the ratio of exergy consumption to energy consumption for building energy efficiency[J]. International Journal of Green Energy, 2018, 15(12): 681-691. [2] LI W, ZHOU Y, CETIN K, et al. Modeling urban building energy use: a review of modeling approaches and procedures[J]. Energy, 2017, 141: 2445-2457. [3] 张涛, 毕胜, 丛玉凤, 等. 石蜡基相变材料在储热材料中应用的研究进展[J]. 当代化工, 2024, 53(2): 435-439. [4] 刘芮, 王振兴, 张文静, 等. 储热材料研究现状及相变储热研究进展[J]. 电机与控制应用, 2024, 51(2): 44-60. [5] NIU S, CHENG J, ZHAO Y, et al. Preparation and characterization of multifunctional phase change material microcapsules with modified carbon nanotubes for improving the thermal comfort level of buildings[J]. Construction and Building Materials, 2022, 347: 128628. [6] GOLDBERG M, LANGER R, JIA X. Nanostructured materials for applications in drug delivery and tissue engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2007, 18(3): 241-268. [7] TEHRANI S S M, SHORAKA Y, NITHYANANDAM K, et al. Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: a case study of the 19.9 MWe Gemasolar CSP plant[J]. Applied Energy, 2018, 228: 240-253. [8] NAZIR H, BATOOL M, OSORIO F J B, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. [9] WU S, XIE H, JIANG W, et al. Molecular dynamics study on the adsorption and thermal properties of paraffin in graphene[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122436. [10] GUO H, JIAO W, JIN H, et al. Microsphere structure composite phase change material with anti-leakage, self-sensing, and photothermal conversion properties for thermal energy harvesting and multi-functional sensor[J]. Advanced Functional Materials, 2023, 33(1): 2209345. [11] ZHANG S, FENG D, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. [12] ATINAFU D G, DONG W, BERARDI U, et al. Phase change materials stabilized by porous metal supramolecular gels: gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806. [13] DAI W, LV L, MA T, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Advanced Science, 2021, 8(7): 2003734. [14] CHENG P, CHEN X, GAO H, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: fundamentals and applications[J]. Nano Energy, 2021, 85: 105948. [15] LIU D, LEI C, WU K, et al. A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion[J]. ACS Nano, 2020, 14(11): 15738-15747. [16] ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: a review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. [17] YE S, ZHANG Q, HU D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 4018-4025. [18] ARCE P, MEDRANO M, GIL A, et al. Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe[J]. Applied Energy, 2011, 88(8): 2764-2774. [19] LIU Z, YU Z J, YANG T, et al. A review on macro-encapsulated phase change material for building envelope applications[J]. Building and Environment, 2018, 144: 281-294. [20] GUO X, ZHANG S, CAO J. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 83-93. [21] ALRASHDAN A, MAYYAS A T, AL-HALLAJ S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs[J]. Journal of Materials Processing Technology, 2010, 210(1): 174-179. [22] YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702. [23] 罗祖云, 张嘉冰, 蔡雨晴, 等. 磁性石墨烯气凝胶复合材料的制备及其性能研究[J]. 现代化工, 2024, 44(7): 175-179. [24] 柯文涛, 陈明, 郑淳天, 等. 石蜡Pickering乳液及其微胶囊相变非织造材料的制备与性能[J]. 纺织学报, 2024, 45(7): 130-139. [25] 李博鑫, 杨隽阁, 尹德忠, 等. 单分散聚合物微球稳定Pickering乳液法制备大粒径微胶囊相变材料[J]. 高等学校化学报, 2020, 41(9): 2085-2089. [26] ZHANG Y, ZHENG X, WANG H, et al. Encapsulated phase change materials stabilized by modified graphene oxide[J]. Journal of Materials Chemistry A, 2014, 2(15): 5304-5314. [27] LI Y, CHEN J, HUANG L, et al. Highly compressible macroporous graphene monoliths via an improved hydrothermal process[J]. Advanced Materials, 2014, 26(28): 4789-4793. [28] ZHAO W, CHEN H, WANG Y, et al. Preparation of elastic macroporous graphene aerogel based on Pickering emulsion method and combination with ETPU for high performance piezoresistive sensors[J]. Micromachines, 2023, 14(10): 1904. [29] 王汉杰, 生瑜, 朱德钦, 等. 氧化石墨烯的Pickering乳液稳定性的影响因素[J]. 高分子材料科学与工程, 2020, 36(11): 183-190. [30] 李朝利, 汪进前, 盖燕芳, 等. 石墨烯/棉织物导电复合材料的制备、表征及应用 [J]. 浙江理工大学学报(自然科学版), 2020, 43(1): 1-8. [31] 丁晴, 方昕, 范利武, 等. 不同二维纳米填料对复合相变材料导热系数的影响[J]. 储能科学与技术, 2014, 3(3): 250-255. [32] LI Y, CHEN J, HUANG L, et al. “Pottery” of porous graphene materials[J]. Advanced Electronic Materials, 2015, 1(5): 1500004. [33] 刘红霞, 徐阳, 周昌兵, 等. 聚苯胺包覆纤维素纳米晶/石墨烯复合电极材料的制备与性能[J]. 高分子材料科学与工程, 2017, 33(11): 166-170. [34] AISWARYA V, DAS S, WATMODE P D, et al. Development of hybrid MgO/GO modified microencapsulated phase change material for thermal energy management: an experimental approach[J]. Journal of Cleaner Production, 2024, 434: 140399. [35] 夏旭, 刘伍权, 朱岩. 内燃机余热回收储热材料的热物性研究[J]. 军事交通学院学报, 2020, 22(3): 89-95. |