[1] YUAN X W, LI W G, XIAO Z M, et al. Prediction of temperature-dependent transverse strength of carbon fiber reinforced polymer composites by a modified cohesive zone model[J].Composite Structures, 2023, 304: 116310. [2] MARIGO J J. Modelling of fracture by cohesive force models: a path to pursue[J].European Journal of Mechanics-A/Solids, 2023, 102:105088. [3] CHEN J F, MOROZOV E V, SHANKAR K. Simulating progressive failure of composite laminates including in-ply and delamination damage effects[J].Composites Part A: Applied Science and Manufacturing, 2014, 61: 185-200. [4] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-a critical review[J].Engineering Fracture Mechanics, 2013, 112: 72-96. [5] ARRESE A, BOYANO A, DE GRACIA J, et al. A novel procedure to determine the cohesive law in DCB tests[J].Composites Science and Technology, 2017, 152: 76-84. [6] ARRESE A, INSAUSTI N, MUJIKA F, et al. A novel experimental procedure to determine the cohesive law in ENF tests[J].Composites Science and Technology, 2019, 170: 42-50. [7] LU X, RIDHA M, CHEN B Y, et al. On cohesive element parameters and delamination modelling[J].Engineering Fracture Mechanics, 2019, 206: 278-296. [8] SORENSEN L, BOTSIS J, GMÜR T, et al. Bridging tractions in mode Ⅰ delamination: measurements and simulations[J].Composites Science and Technology, 2008, 68(12): 2350-2358. [9] FARMAND-ASHTIANI E, ALANIS D, CUGNONI J, et al. Delamination in cross-ply laminates: identification of traction-separation relations and cohesive zone modeling[J].Composites Science and Technology, 2015, 119: 85-92. [10] ALJUHMANI A G, ALWASHALI H, OGASAWARA A, et al. Experimental investigation on the effect of openings on the in-plane shear strength and stiffness of cross-laminated timber panels[J].Engineering Structures, 2022, 254: 113786. [11] IARVE E V, GURVICH M R, MOLLENHAUER D H, et al. Mesh-independent matrix cracking and delamination modeling in laminated composites[J].International Journal for Numerical Methods in Engineering, 2011, 88(8): 749-773. [12] ZHAO L, GONG Y, ZHANG J, et al. Simulation of delamination growth in multidirectional laminates under mode Ⅰ and mixed mode Ⅰ/Ⅱ loadings using cohesive elements[J].Composite Structures, 2014, 116: 509-522. [13] LAHERI V, HAO P, GILABERT F A. Direct embedment of RVE-based microscale into lab size coupons to research fracture process in unidirectional and bidirectional composites[J].Composites Science and Technology, 2023, 235: 109949. [14] YE Q, CHEN P. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J].Composites Part B: Engineering, 2011, 42(5): 1076-1083. [15] HARPER P W, SUN L, HALLETT S R. A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour[J].Composites Part A: Applied Science and Manufacturing, 2012, 43(4): 722-734. [16] TURON A, CAMANHO P P, COSTA J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness[J].Composite Structures, 2010, 92(8): 1857-1864. [17] NAGHIPOUR P, BARTSCH M, CHERNOVA L, et al. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: numerical and experimental investigations[J].Materials Science and Engineering: A, 2010, 527(3): 509-517. [18] 张璐珂, 张峰, 赵国浩. FRP约束混凝土柱的修正Drucker-Prager模型[J].复合材料科学与工程, 2023(10): 60-68, 86. [19] GHAYOOR H, HOA S V, MARSDEN C C. A micromechanical study of stress concentrations in composites[J].Composites Part B: Engineering, 2018, 132: 115-124. [20] MELRO A R, CAMANHO P P, PIRES F M A, et al. Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part Ⅱ-micromechanical analyses[J].International Journal of Solids and Structures, 2013, 50(11-12): 1906-1915. [21] VAUGHAN T J, MCCARTHY C T. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[J].Composites Science and Technology, 2011, 71(3): 388-396. [22] YANG L, YAN Y, LIU Y, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J].Composites Science and Technology, 2012, 72(15): 1818-1825. [23] FU C, WANG X. Micro-mechanical analysis of matrix crack-induced delamination in cross-ply laminates in tension[J].Composite Structures, 2020, 243: 112202. [24] WAN L, ISMAIL Y, SHENG Y, et al. A review on micromechanical modelling of progressive failure in unidirectional fibre-reinforced composites[J].Composites Part C: Open Access, 2023, 10: 100348. [25] TRIAS D, COSTA J, MAYUGO J A, et al. Random models versus periodic models for fibre reinforced composites[J].Computational Materials Science, 2006, 38(2): 316-324. [26] KADDOUR A S, HINTON M J, SMITH P A, et al. Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise[J].Journal of Composite Materials, 2013, 47(20-21): 2427-2442. [27] 杨雷, 刘新, 高东岳, 等. 考虑纤维随机分布的复合材料热残余应力分析及其对横向力学性能的影响[J].复合材料学报, 2016, 33(3): 525-534. [28] 张容国, 盛冬发, 李忠君, 等. 周期性复合材料力学性能的多尺度分析[J].科学技术与工程, 2022, 22(36): 15994-16000. [29] BALLARD M K, MCLENDON W R, WHITCOMB J D. The influence of microstructure randomness on prediction of fiber properties in composites[J].Journal of Composite Materials, 2014, 48(29): 3605-3620. [30] HOJO M, MIZUNO M, HOBBIEBRUNKEN T, et al. Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation[J].Composites Science and Technology, 2009, 69(11-12): 1726-1734. |