[1] VEATCH F W B R. Process of producing hollow particles and resulting product: US 2797201A[P]. 1957-06-25. [2] ROSTILOV T A, ZIBOROV V S. Experimental study of shock wave structure in syntactic foams under high-velocity impact[J]. Acta Astronautica, 2021, 178: 900-907. [3] WU B Y, LIU H B, FU R L, et al. Epoxy-matrix composite with low dielectric constant and high thermal conductivity fabricated by HGMs/Al2O3 co-continuous skeleton [J]. Journal of Alloys and Compounds, 2021, 869: 159332. [4] ANIRUDH S, JAYALAKSHMI C G, ANAND A, et al. Epoxy/hollow glass microsphere syntactic foams for structural and functional application-A review[J]. European Polymer Journal, 2022, 171:111163. [5] DONG X, WANG M C, TAO X, et al. Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings[J]. Ceramics International, 2020, 46(1): 415-420. [6] 李芝华, 陈明, 李珍, 等. 界面活化处理对固体浮力材料力学性能的影响[J]. 高分子材料科学与工程, 2016, 32(11): 70-74. [7] GUPTA N, KISHORE, WOLDESENBET E, et al. Studies on compressive failure features of in syntactic foam material[J]. Journal of Materials Science, 2001, 36: 4485-4491. [8] GUPTA N, WOLDESENBET E, KISHORE. Compressive fracture features of syntactic foams-microscopic examination[J]. Journal of Materials Science, 2002, 37: 3199-3209. [9] GUPTA N, RICCI W. Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness[J]. Materials Science and Engineering, 2006, 427(1-2): 331-342. [10] 李苗苗, 陈平, 王辉, 等. 环氧树脂复合泡沫塑料的制备及其拉压性能[J]. 材料研究学报, 2017, 31(2): 88-95. [11] 李苗苗, 陈平, 李建超. 粉煤灰微珠含量与粒径级配比对环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2017, 34(2): 345-351. [12] GIBSON I J, ASHBY M F. The mechanics of three-dimensional cellular materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, 382(1782): 43-59. [13] GUPTA N, WOLDESENBET E, MENSAH P. Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 103-111. [14] BARDELLA L, GENNA F. On the elastic behavior of syntactic foams[J]. International Journal of Solids and Structures, 2001, 38: 7235-7260. [15] HUANG J S, GIBSON L J. Elastic moduli of a composite of hollow spheres in a matrix[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 55-75. [16] 梁希, 李慧剑, 余为, 等. 空心颗粒填充复合材料弹塑性力学行为模拟[J]. 固体力学学报, 2013, 34(1): 73-82. [17] NIELSEN L E. Generalized equation for the elastic moduli of composite materials[J]. Journal of Applied Physics, 1970, 41(11): 4626-4627. [18] STRICKER F, BRUCH M, MÜLHAUPT R. Mechanical and thermal properties of syndiotactic polypropene filled with hollow glass microspheres and talcum[J]. Polymer, 1997, 38(21): 5347-5353. [19] PALUMBO M, DONZELLA G, TEMPESTI E, et al. On the compressive elasticity of epoxy resins filled with hollow glass microspheres[J]. Journal of Applied Polymer Science, 1996, 60(1): 47-53. [20] 卢子兴, 石上路, 邹波, 等. 环氧树脂复合泡沫材料的压缩力学性能[J]. 复合材料学报, 2005(4): 17-22. [21] 中国建筑材料联合会. 树脂浇铸体性能试验方法: GB/T 2567—2021[S]. 北京: 中国标准出版社, 2021. [22] 姚晨宇, 杨田, 詹胜鹏, 等. 空心玻璃微珠/超高分子量聚乙烯复合材料低速重载工况下的摩擦磨损性能[J]. 复合材料学报, 2022, 39(6): 2649-2660. [23] 修昊, 段先健, 张婷婷, 等. 气相二氧化硅物理吸附水测定及与表面硅羟基含量之间关系[J]. 高分子材料科学与工程, 2021, 37(1): 102-108, 149. [24] 江猛, 熊玉竹, 张清坡, 等. 改性多层氧化石墨烯/二氧化硅材料的制备及对天然橡胶的增强作用[J]. 高分子材料科学与工程, 2019, 35(9): 134-141. [25] BRATT P W, CUNNION J P, SPIVACK B D. Mechanical testing of glass hollow microspheres[M]//Advances in Materials Characterization. New York: Springer, 1983: 442-444. [26] 段婷. 空心玻璃微珠的制备与性能研究[D]. 大连: 大连交通大学, 2020. [27] 国家标准委. 统计分布数值表t分布: GB 4086.3—1983[S]. 北京: 中国标准出版社, 1983. [28] 盛骤, 谢式千, 潘承毅. 概率论与数理统计: 第四版[M]. 北京: 高等教育出版社, 2008: 184-187. |