[1] SASIDHARAN S, ANAND A. Epoxy-based hybrid structural composites with nanofillers: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12617-12631. [2] GUO H, ZHOU M, LI P, et al. Prospects of carbon fiber composites applications in hydraulic supports[J]. Frontiers in Materials, 2022, 9: 997258. [3] ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B: Engineering, 2022, 233: 109639. [4] YU B, LI Y, TU H, et al. Experimental and numerical investigation into interlaminar toughening effect of chopped fiber-interleaved flax fiber reinforced composites[J]. Acta Mechanica Sinica, 2024, 40(1): 423287. [5] WENG Y, WU L, OU Y, et al. Short carbon nanotubes: from matrix toughening to interlaminar toughening of CFRP composites[J]. Composites Communications, 2023, 41: 101652. [6] GU G, ZHANG Y, DONG S, et al. Synergetic improvement of the thermal conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites by interleaving BN@ZnO particles[J]. Journal of Applied Polymer Science, 2023, 140(10): e53583. [7] QUAN D, FAROOQ U, ZHAO G, et al. Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites[J]. Materials & Design, 2022, 218: 110671. [8] ZHOU J, ZHANG C, CHENG C, et al. Synergetic improvement of interlaminar fracture toughness in carbon fiber/epoxy composites interleaved with PES/PEK-C hybrid nanofiber veils[J]. Advanced Fiber Materials, 2022, 4(5): 1081-1093. [9] CHEN J, RONG F, XIE Y. Fabrication, microstructures and sensor applications of highly ordered electrospun nanofibers: a review[J]. Materials, 2023, 16(9): 3310. [10] SAGHAFI H, MOALLEMZADEH A R, ZUCCHELLI A, et al. Shear mode of fracture in composite laminates toughened by polyvinylidene fluoride nanofibers[J]. Composite Structures, 2019, 227: 111327. [11] QUAN D, MISCHO C, LI X, et al. Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils[J]. Composites Science and Technology, 2019, 182: 107775. [12] QUAN D, ALDERLIESTEN R, DRANSFELD C, et al. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils[J]. Composite Structures, 2020, 252: 112699. [13] ZHAO X, CHEN W, HAN X, et al. Enhancement of interlaminar fracture toughness in textile-reinforced epoxy composites with polyamide 6/graphene oxide interlaminar toughening tackifier[J]. Composites Science and Technology, 2020, 191: 108094. [14] MOHAMMADI R, AHMADI NAJAFABADI M, SAGHAFI H, et al. A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission[J]. Composite Structures, 2021, 258: 113395. [15] ESKIZEYBEK V, YAR A, AVCI A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved mode Ⅰ interlaminar fracture toughness[J]. Composites Science and Technology, 2018, 157: 30-39. [16] SONG X, GAO J, ZHENG N, et al. Interlaminar toughening in carbon fiber/epoxy composites interleaved with CNT-decorated polycaprolactone nanofibers[J]. Composites Communications, 2021, 24:100622. [17] QUAN D, URDÁNIZ J L, IVANKOVIĆ A. Enhancing mode-Ⅰ and mode-Ⅱ fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes[J]. Materials & Design, 2018, 143: 81-92. [18] MONTESERIN C, BLANCO M, MURILLO N, et al. Novel antibacterial and toughened carbon-fibre/epoxy composites by the incorporation of TiO2 nanoparticles modified electrospun nanofibre veils[J]. Polymers, 2019, 11(9): 1524. [19] LIU Y, ZOU A, WANG G-D, et al. Enhancing interlaminar fracture toughness of CFRP laminates with hybrid carbon nanotube/graphene oxide fillers[J]. Diamond and Related Materials, 2022, 128:109285. [20] SONG Y, ZHENG N, DONG X, et al. Flexible carboxylated CNT/PA66 nanofibrous mat interleaved carbon fiber/epoxy laminates with improved interlaminar fracture toughness and flexural properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1151-1158. [21] WANG H, WANG R, SUN L, et al. Mechanical and tribological characteristics of carbon nanotube-reinforced polyvinylidene fluoride (PVDF)/epoxy composites[J]. RSC Advances, 2016, 6(51): 45636-45644. [22] 曾塘玉, 马传国, 向阳, 等. BN粒子改性PVDF电纺纤维膜插层增强碳纤维/环氧树脂复合材料层间韧性[J]. 复合材料科学与工程, 2023(4): 26-32. [23] MOHAMMADI R, AHMADI NAJAFABADI M, SAGHAFI H, et al. Mode-Ⅱ fatigue response of AS4/8552 carbon/epoxy composite laminates interleaved by electrospun nanofibers[J]. Thin-Walled Structures, 2020, 154: 106811. [24] WANG J, POZEGIC T R, XU Z, et al. Cellulose nanocrystal-polyetherimide hybrid nanofibrous interleaves for enhanced interlaminar fracture toughness of carbon fibre/epoxy composites[J]. Composites Science and Technology, 2019, 182: 107744. [25] CAI S, LI Y, LIU H-Y, et al. Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Composites Science and Technology, 2019, 181: 107673. [26] BECKERMANN G W, PICKERING K L. Mode Ⅰ and mode Ⅱ interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 11-21. [27] KUMAR M, KUMAR P, BHADAURIA S S. Experimental characterization and numerical study on the interlaminar fracture toughness of carbon fibre reinforced polymer laminates reinforced with carbon nanotubes[J]. Materialwissenschaft und Werkstofftechnik, 2022, 53(12): 1561-1574. [28] SALAMAT-TALAB M, AKHAVAN-SAFAR A, ZEINOLABEDIN-BEYGI A, et al. Effect of through-the-thickness delamination position on the R-curve behavior of plain-woven enf specimens[J]. Materials, 2023, 16(5): 1811. [29] VELLWOCK A E, LIBONATI F. XFEM for composites, biological, and bioinspired materials: a review[J]. Materials, 2024, 17(3):745. [30] WANG Z, ZHONG X, JIANG L, et al. Effect of interfacial delamination on coating crack in thick diamond-like carbon coatings under indentation[J]. Acta Mechanica Sinica, 2020, 36(2): 524-535. [31] ZHANG N, ZHANG Y, CAI D A, et al. Assessment of Ⅰ/Ⅱ fracture toughness of new magnetically guided stainless steel particle toughened carbon/epoxy composites[J]. Thin-Walled Structures, 2022, 180: 109842. [32] SHAO M, ZHOU G, CHEN M, et al. On mode Ⅰ/Ⅱ interlaminar fracture toughness of double-sided-loop 2D woven laminated composites[J]. Composite Structures, 2022, 286: 115311. [33] 付泽浩, 向阳, 马传国, 等. FeOOH纳米粒子协同聚偏氟乙烯电纺纤维膜插层增强碳纤维复合材料层间断裂韧性[J]. 复合材料学报, 2022, 39(4): 1582-1591. [34] ZHANG L-L, LI X-L, WANG P, et al. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films[J]. New Carbon Materials, 2023, 38(3): 566-573. [35] WAFAI H, YUDHANTO A, LUBINEAU G, et al. An experimental approach that assesses in-situ micro-scale damage mechanisms and fracture toughness in thermoplastic laminates under out-of-plane loading[J]. Composite Structures, 2019, 207: 546-559. [36] PRASAD V, SEKAR K, VARGHESE S, et al. Enhancing mode Ⅰ and mode Ⅱ interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105505. [37] ALJARRAH M T, ABDELAL N R. Improvement of the mode Ⅰ interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering, 2019, 165: 379-385. [38] QUAN D, BOLOGNA F, SCARSELLI G, et al. Mode-Ⅱ fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Composites Science and Technology, 2020, 191: 108065. |