[1] ZHAI J, KONG X, CHENG S, et al. A coupled multi-scale method for predicting the viscoelastic behavior of resin-based 3D braided composites[J]. Materials & Design, 2020, 195: 109048.
[2] CRUZ-GONZÁLEZ O L, RODRÍGUEZ-RAMOS R, OTERO J A, et al. On the effective behavior of viscoelastic composites in three dimensions[J]. International Journal of Engineering Science, 2020, 157: 103377.
[3] CRUZ-GONZÁLEZ O L, RAMÍREZ-TORRES A, RODRÍGUEZ-RAMOS R, et al. A hierarchical asymptotic homogenization approach for viscoelastic composites[J]. Mechanics of Advanced Materials and Structures, 2020, 28(21): 2190-2201.
[4] CRUZ-GONZÁLEZ O L, RAMÍREZ TORRES A, RODRÍGUEZ-RAMOS R, et al. Effective behavior of long and short fiber-reinforced viscoelastic composites[J]. Applications in Engineering Science, 2021, 6: 100037.
[5] HE Z, PINDERA M-J. Locally exact asymptotic homogenization of viscoelastic composites under anti-plane shear loading[J]. Mechanics of Materials, 2021, 155: 103752.
[6] PALLICITY T D, CRUZ-GOUZÁLEZ O L, OTERO J A, et al. Effective behavior of viscoelastic composites: comparison of Laplace-Carson and time-domain mean-field approach[J]. Archive of Applied Mechanics, 2022, 92(8): 2371-2395.
[7] LI Q, CHEN W, LIU S, et al. A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures[J]. Composite Structures, 2018, 208: 276-286.
[8] YANG Z, SUN Y, LIU Y, et al. A three-scale asymptotic analysis for ageing linear viscoelastic problems of composites with multiple configurations[J]. Applied Mathematical Modelling, 2019, 71: 223-242.
[9] RODRÍGUEZ-RAMOS R, OTERO J A, CRUZ-GONZÁLEZ O L, et al. Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method[J]. International Journal of Solids and Structures, 2020, 190: 281-290.
[10] YANG Z, LI M, SUN Y, et al. A multiscale reduced homogenization approach for nonlinear viscoelastic problems of periodic heterogeneous materials[J]. Composite Structures, 2022, 279: 114864.
[11] ZHAI H, BAI T, WU Q, et al. Time-domain asymptotic homogenization for linear-viscoelastic composites: mathematical formulae and finite element implementation[J]. Composites Part C: Open Access, 2022, 8: 100248.
[12] HE Z. Finite volume based asymptotic homogenization of viscoelastic unidirectional composites[J]. Composite Structures, 2022, 291: 115601.
[13] CHEN Y, NAN T, YUN G J, et al. Micromechanical modeling of the viscoelastic-viscoplastic response of fiber-reinforced composites[J]. International Journal of Engineering Science, 2022, 181: 103767.
[14] YANG P, CHEN Y, GUO Z, et al. Modeling the effective elastic and viscoelastic properties of randomly distributed short fiber reinforced composites[J]. Composites Communications, 2022, 35: 101341.
[15] VLASOV N A, VOLKOV-BOGORODSKY B D, SAVATOROVA L V. Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space[J]. Mechanics of Time-Dependent Materials, 2021, 26: 565-591.
[16] NIKOLAEVICH A V, BORISOVICH D B V, VIKTORIA S. Using asymptotic homogenization to determine effective thermo-viscoelastic properties of fibrous composites with interphase layer[J]. Mathematics and Mechanics of Solids, 2023, 28(8): 1845-1862.
[17] 舒乐华, 谢桂兰, 曹尉南, 等. 基于均匀化理论粘弹性复合材料松弛规律的研究[J]. 新技术新工艺, 2010(9): 88-90.
[18] 舒乐华. 聚合物基复合材料粘弹性性能预测[D]. 湘潭: 湘潭大学, 2011.
[19] 谢桂兰. 聚合物基复合材料多尺度方法的研究[D]. 湘潭: 湘潭大学, 2008.
[20] 陈星. 基于渐进均匀化方法的典型非均质材料力学特性研究[D]. 武汉: 华中科技大学, 2016.
[21] 张志洋. 颗粒增强非晶合金复合材料等效模量及黏弹性能的均匀化方法数值模拟[D]. 湘潭: 湘潭大学, 2018.
[22] 姜雪光. 基于渐进均匀化理论的复合材料性能预测与分析[D]. 哈尔滨: 东北林业大学, 2019.
[23] 郑成功. 基于渐进均匀化方法的纤维增强复合材料力学性能分析及应用[D]. 长春: 吉林大学, 2020.
[24] 龙川洲. 周期构造复合材料力学性能分析的高阶多尺度模型和数值算法[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[25] 李明. 具有周期构造粘弹塑性复合材料的降阶多尺度分析及数值算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[26] RIVAS-MENCHI A, ACUÑA-GONZÁLEZ N, VALADEZ-GONZÁLEZ A, et al. Effect of linear viscoelasticity on stress transfer in a numerical model of a single fiber fragmentation test[J]. Materials Today Communications, 2020, 22: 100757.
[27] FISH J. Practical multiscaling[M]. John Wiley & Sons, Inc., 2014.
[28] YAN H, OSKAY C. A viscoelastic-viscoplastic model of titanium structures subjected to thermo-chemo-mechanical environment[J]. International Journal of Solids and Structures, 2015, 56-57: 29-42.
[29] OTERO J A, RODRÍGUEZ-RAMOS R, GUINOVART-DÍAZ R, et al. Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony’sseries[J]. Acta Mechanica, 2020, 231(7): 2761-2771. |