[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007(1): 1-12. [2] DONG S, ZHOU P, NING Z, et al. Durability of carbon-and glass-fiber reinforced thermoplastic polymer composites: a literature review[J]. Journal of Building Engineering, 2024, 98: 111055. [3] JIN Z, HAN Z, CHANG C, et al. Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: interfacial modification, nano-filling and forming technology[J]. Composites Science and Technology, 2022, 228: 109660. [4] PEGORETTI A. Towards sustainable structural composites: a review on the recycling of continuous-fiber-reinforced thermoplastics[J]. Advanced Industrial and Engineering Polymer Research, 2021, 4(2): 105-115. [5] BERNATAS R, DAGRÉOU S, DESPAX-FERRERES A, et al. Recycling of fiber reinforced composites with a focus on thermoplastic composites[J]. Cleaner Engineering and Technology, 2021(5): 100272. [6] YAGHOUBI V, KUMRU B. Retrosynthetic life cycle assessment: a short perspective on the sustainability of integrating thermoplastics and artificial intelligence into composite systems[J]. Advanced Sustainable Systems, 2024, 8(5): 2300543. [7] ALMUSHAIKEH A M, ALASWAD S O, ALSUHYBANI M S, et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: a review[J]. Polymer Testing, 2023, 122: 108029. [8] DE B, BERA M, BHATTACHARJEE D, et al. A comprehensive review on fiber-reinforced polymer composites: raw materials to applications, recycling, and waste management[J]. Progress in Materials Science, 2024, 146: 101326. [9] XU X, PENG G, ZHANG B, et al. Material performance, manufacturing methods, and engineering applications in aviation of carbon fiber reinforced polymers: a comprehensive review[J]. Thin-Walled Structures, 2024, 209: 112899. [10] BIRON M. Thermoplastics and thermoplastic composites[M]. William Andrew, 2018. [11] LI J, HUANG Q, YIN Y, et al. The technology and current applications of continuous fiber-reinforced thermoplastic composites[J]. Polymer Composites, 2024, 45(15): 13480-13498. [12] KRUEGER R, BERGAN A. advances in thermoplastic composites over three decades-A literature review: TM-20240005376[R]. NASA, 2024. [13] OZTURK F, COBANOGLU M, ECE R E. Recent advancements in thermoplastic composite materials in aerospace industry[J]. Journal of Thermoplastic Composite Materials, 2024, 37(9): 3084-3116. [14] LI H, GE Z, ZHANG Y, et al. Continuous CF/PA6 composite aircraft window frame manufactured via a novel winding compression process[J]. Materials, 2024, 17(6): 1236. [15] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285. [16] 江洪, 彭导琦. 先进复合材料在航天航空器中的应用[J]. 新材料产业, 2022, 1(2): 2-7. [17] 仝安乾, 王庆磊, 康海刚. 高分子复合材料在航空领域中的应用[J]. 信息记录材料, 2023, 24(1): 51-53. [18] THIRUCHITRAMBALAM M, KUMAR D B, SHANMUGAM D, et al. A review on PEEK composites-manufacturing methods, properties and applications[J]. Materials Today: Proceedings, 2020, 33: 1085-1092. [19] ALSHAMMARI B A, ALSUHYBANI M S, ALMUSHAIKEH A M, et al. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites[J]. Polymers, 2021, 13(15): 2474. [20] ALSHAHRANI H, AHMED A, KABREIN H, et al. RETRACTED: mechanical properties study on sandwich composites of glass fiber reinforced plastics (GFRP) using liquid thermoplastic resin, Elium®: preliminary experiments[J]. Coatings, 2022, 12(10): 1423. [21] YAN S, ABDIN Y. Fatigue behavior of Elium®-based thermoplastic composites fabricated by liquid composite molding: a review[J]. Composites Part B: Engineering, 2025, 295: 112159. [22] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7): 1327-1338. [23] 胡燕萍. TAPAS第二阶段: 热塑性航空结构的进一步发展[EB/OL].(2014-07-14)[2025-01-03]. http://www.frpapp.com/hangyezixun/201407/14/1746.html. [24] WOUTER W. Fibre steered skin design of composite thermoplastic horizontal stabilizer torsion box[C]//Raes Aircraft Design Conference 2016. Manchester: 2016: 1-13. [25] 罗云烽, 姚佳楠. 高性能热塑性复合材料在民用航空领域中的应用[J]. 航空制造技术, 2021, 64(16): 93-102. [26] 秦田亮, 徐吉峰, 郭瑾, 等. 民机热塑性复合材料结构制造关键技术及应用进展[J]. 航空制造技术, 67(20): 118-133. [27] ZEYREK B, AYDOGAN B, DILEKCAN E, et al. Review of thermoplastic composites in aerospace industry[J]. International Journal on Engineering Technologies and Informatics, 2022, 3(1): 1-6. [28] ZHAO T, RANS C, VILLEGAS I F, et al. On sequential ultrasonic spot welding as an alternative to mechanical fastening in thermoplastic composite assemblies: a study on single-column multi-row single-lap shear joints[J]. Composites Part A: Applied Science and Manufacturing, 2019, 120: 1-11. [29] POURAHMADI E, GANESAN R, SHADMEHRI F. Micromechanical characterization of carbon/PEEK thermoplastic composite material in-situ consolidated by automated fiber placement: stiffness prediction[J]. Composites Science and Technology, 2024, 246: 110390. [30] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16): 64-77. [31] DONOUGH M J, ST JOHN N A, PHILIPS A W, et al. Process modelling of in-situ consolidated thermoplastic composite by automated fibre placement-A review[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107179. [32] BHUDOLIA S K, GOHEL G, LEONG K F, et al. Advances in ultrasonic welding of thermoplastic composites: a review[J]. Materials, 2020, 13(6): 1284. [33] LIU Z, LI Y, LIU Z, et al. Ultrasonic welding of metal to fiber-reinforced thermoplastic composites: a review[J]. Journal of Manufacturing Processes, 2023, 85: 702-712. [34] WANG Y, RAO Z, LIAO S, et al. Ultrasonic welding of fiber reinforced thermoplastic composites: current understanding and challenges[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106578. [35] OLIVERI V, ZUCCO G, PEETERS D, et al. Design, manufacture and test of an in-situ consolidated thermoplastic variable-stiffness wingbox[J]. AIAA Journal, 2019, 57(4): 1671-1683. [36] 杨苑铎, 李洋, 李一昂, 等. 碳纤维增强热塑性复合材料超声波焊接研究进展[J]. 机械工程学报, 2022, 57(22): 130-156. [37] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9): 4179-4186. [38] 郝建伟. 复合材料制造自动化技术发展[J]. 航空制造技术, 2010, 53(17): 26-29. [39] 李仲平, 冯志海, 徐樑华, 等. 我国高性能纤维及其复合材料发展战略研究[J]. 中国工程科学, 2020, 22(5): 28-36. [40] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19): 52-63. |