[1] XU Y J, MA Y, ZHANG H, et al. Excellent ballistic performance of B4C/shear thickening fluid (STF)/ZnO aramid composite fabric[J]. Thin-Walled Structures, 2025, 210(2): 113011. [2] ANDOKO A, PRASETYA R, SUPRAYITNO S, et al. Characterization of Kevlar enhanced with shear-thickening fluid (STF) and boron carbide (B4C)[J]. Journal of Materials Engineering and Performance, 2025, 34: 20017-20027. [3] ASGEDOM G, YENENEH K, TILAHUN G, et al. Numerical and experimental analysis of body armor polymer penetration resistance against 7.62 mm bullet[J]. Heliyon, 2025, 11(1): 41286. [4] 张清华. 高性能化学纤维生产及应用[M]. 北京: 中国纺织出版社, 2018: 1-2. [5] 赵刚, 赵莉, 谢雄军. 超高分子量聚乙烯纤维的技术与市场发展[J]. 纤维复合材料, 2011, 28(1): 50-56. [6] CROUCH I G. Body armour-new materials, new systems[J]. Defence Technology, 2019, 15(3): 241-253. [7] PULUNGAN M A, SUTIKNO, SANI M S M. Analysis of bulletproof vest made from fiber carbon composite and hollow glass microsphere (HGM) in absorbing energy due to projectile impact[J]. IOP Conference Series: Materials Science and Engineering, 2019, 506(1):012001. [8] QIN F, LEI Z, MA Y, et al. Stress transfer of single yarn drawing in soft fabric studied by micro Raman spectroscopy[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 134-141. [9] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9): 4286-4309. [10] 贾彩霞, 王乾, 任荣. 超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J]. 复合材料学报, 2020, 37(3): 573-580. [11] VLASBLOM M P, BOESTEN J, LEITE S, et al. New polyethylene fiber suitable for deepwater mooring ropes[C]//Offshore Technology Conference. Proceedings of the Offshore Technology Conference. Houston, TX, USA: Offshore Technology Conference, 2012: 23565. [12] 翟豹, 张家振, 刘斌. 超高分子量聚乙烯在人工关节假体中的应用及评价方法[J]. 生物骨科材料与临床研究, 2020, 17(4): 67-70. [13] ZHAO C Z, NI C, JIN F, et al. Multi-scale finite element modeling of cross-ply UHMWPE fiber composites under ballistic impact[J]. Composite Structures, 2025, 215: 367745. [14] 李涵, 陈长海, 鲁程. 纤维增强复合材料层合板抗侵彻的多尺度模拟方法[J]. 高压物理学报, 2025, 39(5): 054201. [15] 刘迪, 肖依, 江旭伟, 等. SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟[J]. 上海大学学报(自然科学版), 2020, 26(2): 234-243. [16] 黄明, 曹峰, 彭志航, 等. 防弹装甲用碳化硼陶瓷材料的研究进展[J]. 现代技术陶瓷, 2021, 42(4): 213-224. [17] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(12): 23064-23073. [18] ZHANG Y J, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor[J]. Ceramics International, 2022, 48(18): 26758-26771. [19] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景[J]. 航空材料学报, 2019, 39(5): 34-44. [20] 段婷婷, 张岩, 郭雁, 等. 碳化硼陶瓷复合结构抗弹性能[J]. 工程塑料应用, 2024, 52(11): 136-140. [21] 王东哲, 秦溶蔓, 孙娜, 等. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221. [22] 汪勇峰. SiC陶瓷/UHMWPE 纤维复合材料复合装甲抗侵彻性能的数值模拟研究[D]. 浙江: 浙江理工大学, 2023. [23] 滕凌虹. 陶瓷/纤维复合装甲抗侵彻性能研究及仿真模拟[D]. 天津: 天津工业大学, 2021. [24] 李深. 陶瓷/UHMWPE纤维复合材料的设计制备及弹道侵彻性能研究[D]. 无锡: 江南大学, 2021. [25] 李孟华, 马治, 彭兵等. 子弹侵彻装甲钢板数值仿真分析[J]. 机械设计与制造工程, 2021, 50(9): 25-28. [26] 张鹏, 志军, 武伟, 等. 高速弹体侵彻钢/陶瓷/超高分子量聚乙烯纤维/钢实验[J]. 兵器材料科学与工程, 2016, 39(5): 104-109. [27] DING L, GU X H, SHEN P H, et al. Ballistic limit of UHMWPE composite armor under impact of ogive-nose projectile[J]. Polymers, 2022, 14(22): 4866. [28] PARK R, JANG J. Effect of laminate geometry on impact performance of aramid fiber/polyethylene fiber hybrid composites[J]. Journal of Applied Polymer Science, 2000, 75: 952-959. [29] 李翠玉, 王林心, 宋佳佳, 等. 芳纶-UHMWPE混杂复合材料力学性能研究[J]. 针织工业, 2022, 12: 27-31. [30] CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106145. [31] 杨燕宁, 孟家光, 程燕婷, 等. 硅烷偶联剂表面改性UHMWPE纤维的工艺优化[J]. 合成纤维工业, 2018, 41(1): 31-34. [32] 冯霞, 胡俊成, 阿拉东.多巴胺仿生修饰及聚乙烯亚胺二次功能化表面改性超高分子量聚乙烯纤维[J]. 天津工业大学学报, 2016, 35(6): 14-19. [33] 吴金丹, 汪维海, 陈宏, 等. 一种提高超高分子量聚乙烯纤维与基体树脂结合性的表面改性方法: CN114059347A[P]. 2022-02-18. [34] LIU X Z, WANG K. Interfacial microstructure and properties between epoxy resin and novel organic hybrid graphene oxide modification ultra-high molecular weightpolyethylene fiber[J]. Polymer, 2020, 197: 122472. [35] WANG L, GAO S B, WANG J J, et al. Surface modification of UHMWPE fibers by ozone treatment and UV grafting for adhesion improvement[J]. The Journal of Adhesion, 2016, 94(1): 30-45. [36] CHHETRI S, SARWAR A, STEER J, et al. Design of a bi-layer coating configuration on ultra-high molecular weight polyethylene (UHMWPE) fiber surface to derive synergistic response on interfacial bondstrength[J].Composites Part A: Applied Science and Manufacturing, 2022, 152: 106678. [37] BAHRAMIAN N, ATAI M, NAIMI-JAMAL M R. Ultra-high molecular-weight polyethylene fiber reinforced dental composites: effect of fiber surface treatment on mechanical properties of the composites[J].Dental Materials, 2015, 31(9): 1022-1029. [38] TADA N, JIN M, UEMORI T, et al. Prediction of fracture location in tensile test of short-fiber-self-reinforced polyethylene composite plates[C]//ASME Pressure Vessels Piping Conference. US: San Antonio, 2019. [39] 王昕, 季海波, 李振, 等. 仿生螺旋结构纤维增强复合材料力学性能研究进展[J]. 航空学报, 2024, 45(19): 128-149. [40] 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展[J]. 高等学校化学学报, 2011, 32(10): 2231-2235. [41] GOVINDARAJ P, SOKOLOVA A, SALIM N, et al. Distribution states of graphene in polymer nanocomposites: a review[J].Composites Part B: Engineering, 2021, 226: 109353. [42] WEI B J, ZHANG L, YANG S Q. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance[J]. Chemical Engineering Journal, 2021, 404: 126437. |