[1] WANG D, LUO B F, FENG Q Q, et al. Development of preplaced alkali-activated coral concrete for a marine environment[J/OL]. Journal of Materials in Civil Engineering, 2024, 36(1)[2024-10-08]. https://doi.org/10.1061/JMCEE7.MTENG-16226. [2] SUN L, WANG C, ZHANG C W, et al. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments[J]. Advances in Structural Engineering, 2023, 26(3): 533-546. [3] JIANG J S, YANG H F, DENG Z H, et al. Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected to axial loading[J]. Frontiers of Structural and Civil Engineering, 2023, 17(3): 429-447. [4] 张继旺, 易金, 章明明, 等. 全珊瑚混凝土的收缩性能试验研究[J]. 混凝土, 2023(1): 165-168. [5] CAO H J, WU Q, AKBAR M, et al. Protective performance of coated reinforcement in coral concrete under dry/wet cycling[J]. Materials (Basel), 2023, 16(11): 4037. [6] 达波, 冯基恒, 倪雷, 等. 岛礁全珊瑚混凝土的力学性能及提升措施[J]. 哈尔滨工程大学学报, 2023, 44(2): 204-210. [7] YIN L, HUANG Y J, DANG Y F, et al. Bond of seawater scoria aggregate concrete to stainless reinforcement[J]. Journal of Renewable Materials, 2023, 11(1): 209-231. [8] ZENG J J, ZHUGE Y, LIANG S D, et al. Durability assessment of PEN/PET FRP composites based on accelerated aging in alkaline solution/seawater with different temperatures[J]. Construction and Building Materials, 2022, 327: 126992. [9] NIE R, HUANG Y, LI X, et al. Bond of epoxy-coated reinforcement to seawater coral aggregate concrete[J]. Ocean Engineering, 2020, 208: 107350. [10] WU M Z, XU J C, LI W Y, et al. Axial compression behavior of concrete columns with CFRP-mesh fabric (CFRP-MF) stirrup and steel-FRP composite bar (SFCB): experimental investigation and mechanism research[J]. Construction and Building Materials, 2024, 436: 136853. [11] ZHANG B, CHENG Y, ZHU H. Bond performance between BFRP bars and alkali-activated seawater coral aggregate concrete[J]. Engineering Structures, 2023, 279: 115596. [12] CHEN S, GUAN J W, CHEN H M, et al. Study on durability and compression behaviors of BFRP bars under seawater deterioration and constraint condition[J]. Journal of Materials in Civil Engineering, 2024, 36(3): 1-14. [13] 经承贵, 武彤, 赵林, 等. GFRP管螺旋筋复合约束混凝土柱轴压性能试验研究[J/OL]. 复合材料科学与工程, 2024, 1-9[2024-10-08]. http://kns.cnki.net/kcms/detail/10.1683.TU.20240813.1050.002.html. [14] 孔祥清, 韩硕, 刚建明, 等. GFRP筋再生混凝土梁受弯承载力研究[J]. 建筑结构, 2024, 54(8): 50-56. [15] 孙丽, 王世光, 侯娜, 等. GFRP筋混凝土短柱偏压性能试验研究[J]. 建筑科学与工程学报, 2014, 31(4): 23-28. [16] 王海洋, 王勃. GFRP筋-钢筋混杂配筋柱偏心受压裂缝形式试验研究[J]. 吉林建筑大学学报, 2022, 39(3): 9-14. [17] 王坦, 李立巍, 周志杰, 等. GFRP筋与钢筋混合配筋柱偏心受压性能试验研究[J]. 建筑结构学报, 2023, 44(增刊1): 248-255. [18] 黄靓, 李一帆, 罗诚. BFRP筋海砂再生混凝土柱轴压性能研究[J]. 混凝土, 2023(10): 12-16. [19] 郑宏宇, 黄志勇, 袁世杰, 等. BFRP筋增强海水海砂混凝土短柱偏心受压性能[J]. 中国科技论文, 2022, 17(12): 1332-1339. [20] 陈爽, 韦丽兰, 陈红梅, 等. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 130-139. [21] ZHANG B, ZHU H, YOU C H, et al. Flexural durability of BFRP bars reinforced geopolymer-based coral aggregate concrete beams conditioned in marine environments[J]. Journal of Building Engineering, 2024, 94: 109959. [22] WANG L, YI J, ZHANG J, et al. Short-term flexural stiffness prediction of CFRP bars reinforced coral concrete beams[J]. Materials, 2021, 14(2): 467. [23] MOJTABA A, ALIREZA K. Effective flexural stiffness of beams reinforced with FRP bars in reinforced concrete moment frames[J/OL]. Journal of Composites for Construction, 2021, 25(1)[2024-10-08]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001101. [24] 邓宗才, 高伟男, 沈锋. 碱、盐环境下不同应力水平FRP筋抗压强度试验与理论研究[J]. 复合材料学报, 2017, 34(10): 2220-2231. [25] 陈爽, 关纪文, 梁淑嘉, 等. 约束条件下CFRP筋单轴抗压性能试验[J]. 华侨大学学报(自然科学版), 2021, 42(6): 758-763. [26] CHEN S, GUAN J W, LIANG S J. Mechanical properties of axially and eccentrically loaded CFRP-coral concrete columns[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2024, 177(6): 475-489. [27] 周济, 陈宗平, 黄禹铭, 等. CFRP-钢复合筋珊瑚海砂海水混凝土梁受弯性能及界限配筋率研究[J/OL]. 工程力学, 2024, 1-17[2024-10-08]. http://kns.cnki.net/kcms/detail/11.2595.o3.20240423.2000.004.html. [28] 钟卿瑜, 张鹏, 陈华, 等. CFRP-PCPs复合筋混凝土柱偏压柱受力性能的试验研究[J]. 玻璃钢/复合材料, 2017(3): 36-43. [29] 关纪文. CFRP筋增强珊瑚混凝土柱偏心受压力学性能研究[D]. 桂林: 桂林理工大学, 2021. [30] 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015. [31] 室温下连续纤维增强陶瓷基复合材料压缩性能测试方法: JC/T 2406—2017[S]. 北京: 中国建材工业出版社, 2017. [32] 轻集料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019. [33] SONG P T, ZHOU Y X, GUAN Q F, et al. Prevention and control of chlorella for C30 concrete surface with coral aggregate[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2022, 37(4): 628-635. [34] 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012. [35] CAO J, PAN X, ZENG L, et al. Creep behavior of steel bonded reinforced concrete members under small eccentric compression[J]. IOP Conference Series: Earth and Environmental Science, 2021, 638(1): 012104. [36] 赵飒, 常乐, 闫维明. 基于可靠度的小偏压柱承载力分项系数的确定方法[J]. 建筑科学, 2014, 30(9): 7-11. [37] BLIKHARSKYY Y, SELEJDAK J, VASHKEVYCH R, et al. Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load[J]. Engineering Structures, 2023, 280: 115694. [38] 达波, 余红发, 麻海燕, 等. 钢筋锈蚀对全珊瑚海水钢筋/混凝土柱大偏心受压性能的影响[J]. 复合材料学报, 2019, 36(10): 2426-2438. [39] 郭喜斌. 钢筋混凝土板类受弯构件的最小配筋率分析[J]. 山西建筑, 2014, 40(9): 38-39. [40] 屈文俊, 方瑾, 周国全. 混凝土受弯构件受拉钢筋最小配筋率[J]. 建筑科学与工程学报, 2011, 28(1): 6-10. [41] 于秋波. HRB500钢筋混凝土受弯构件最小配筋率的探讨[J]. 工业建筑, 2009, 39(1): 90-92. [42] 屈文俊, 刘文博, 庞蕾. 混合配箍混凝土梁最小配箍率分析[J]. 建筑科学与工程学报, 2018, 35(2): 23-29. [43] WANG L, FAN L B, FU F, et al. Cracks width prediction of steel-FRP bars reinforced high-strength composite concrete beams[J]. Structures, 2022, 43: 424-433. [44] FENG Z, LI C X, DOO Y, et al. Flexural and cracking behaviors of reinforced UHPC beams with various reinforcement ratios and fiber contents[J]. Engineering Structures, 2021, 248: 113266. [45] 屈文俊, 戚岩, 朱鹏, 等. 混合配筋混凝土受弯梁裂缝分析研究[C]//中国土木工程学会. 中国土木工程学会2017年学术年会论文集. 北京: 中国城市出版社, 2017: 298-313. [46] 卜良桃, 黎红兵, 周靖. 聚丙烯纤维砂浆钢筋网加固受弯RC梁界限加固配筋率研究[J]. 建筑结构, 2010, 40(5): 11-15. [47] PENG F, DENG J D, FANG Z, et al. Ductility evaluation and flexural failure mode recognition of reinforced ultra-high performance concrete flexural members[J]. Structures, 2023, 51: 1881-1892. |