Fiber Reinforced Plastics/Composites ›› 2019, Vol. 0 ›› Issue (3): 92-100.
• REVIEW • Previous Articles Next Articles
YANG Shi-xuan1, JIAO Wei-cheng1*, CHU Zhen-ming1, ZHANG Chen-wei2
Received:
2018-06-15
Online:
2019-03-28
Published:
2019-03-28
CLC Number:
YANG Shi-xuan, JIAO Wei-cheng, CHU Zhen-ming, ZHANG Chen-wei. RESEARCH PROGRESS OF ALIGNED GRAPHENE REINFORCED POLYMER COMPOSITES[J]. Fiber Reinforced Plastics/Composites, 2019, 0(3): 92-100.
[1] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. [2] Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602. [3] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. [4] Phiri J, Gane P, Maloney T C. General overview of graphene: Production, properties and application in polymer composites[J]. Materials Science & Engineering B, 2017, 215: 9-28. [5] Potts J R, Dreyer D R, Bielawski C W, et al. Graphene-based polymer nanocomposites[J]. Polymer, 2011, 52(1): 5-25. [6] Ji X, Xu Y, Zhang W, et al. Review of functionalization, structure and properties of graphene/polymer composite fibers[J]. Composites Part A, 2016, 87: 29-45. [7] Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127. [8] Verma D, Gope P C, Shandilya A, et al. Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: a review[J]. Transactions of the Indian Institute of Metals, 2014, 67(6): 803-816. [9] Bauld R, Choi D Y W, Bazylewski P, et al. Thermo-optical characterization and thermal properties of graphene-polymer composites: a review[J]. Journal of Materials Chemistry C, 2018, 6: 2901-2914. [10] Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23-36. [11] Barthelat F, Tang H, Zavattieri P D, et al. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. Journal of the Mechanics & Physics of Solids, 2007, 55(2): 306-337. [12] Yaraghi N A, Kisailus D. Biomimetic structural materials: Inspira-tion from design and assembly[J]. Annual Review of Physical Chemistry, 2017, 69(1): 29-53. [13] Hu X, Xu Z, Gao C. Multifunctional, supramolecular, continuous artificial nacre fibres[J]. Scientific Reports, 2012, 2(10): 767-774. [14] Kou L, Gao C. Bioinspired design and macroscopic assembly of poly (vinyl alcohol)-coated graphene into kilometers-long fibers[J]. Nanoscale, 2013, 5(10): 4370-4378. [15] Xu Y, Hong W, Bai H, et al. Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure[J]. Carbon, 2009, 47(15): 3538-3543. [16] Putz K W, Compton O C, Palmeri M J, et al. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly[J]. Advanced Functional Materials, 2010, 20(19): 3322-3329. [17] Tokareva O, Jacobsen M, Buehler M, et al. Structure-function-property-design interplay in biopolymers: Spider silk[J]. Acta Biomaterialia, 2014, 10(4): 1612-1626. [18] Blackledge T A. Spider silk: A brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs[J]. Journal of Arachnology, 2012, 40(1): 1-12. [19] Van Beek J D, Hess S, Vollrath F, et al. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10266-10271. [20] Eisoldt L, Smith A, Scheibel T. Decoding the secrets of spider silk[J]. Materials Today, 2011, 14(3): 80-86. [21] 潘志娟, 盛家镛. 蜘蛛丝的结构与力学性能[J]. 南通工学院学报, 1999(2): 6-8. [22] Chao Z, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions[J]. Acs Appl Mater Interfaces, 2016, 8(5): 3349-3358. [23] Xiao F X, Pagliaro M, Xu Y J, et al. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies[J]. Chemical Society Reviews, 2016, 45(11): 3088-3121. [24] 吕青, 颜红侠, 刘超. 聚合物/定向石墨烯复合材料研究进展[J]. 工程塑料应用, 2016, 44(2): 140-144. [25] Zhao X, Zhang Q, Hao Y, et al. Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly[J]. Macromolecules, 2010, 43(22): 9411-9416. [26] Chen W, Liu P, Min L, et al. Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film[J]. Nano-Micro Letters, 2018, 10(3): 39-51. [27] Hu C, Li J, Liu D, et al. Effects of the coagulation temperature on the properties of wet-spun poly (vinyl alcohol)-graphene oxide fibers[J]. Journal of Applied Polymer Science, 2017, 134(43): 45463-45470. [28] Abdou J P, Braggin G A, Luo Y, et al. Graphene-induced oriented interfacial microstructures in single fiber polymer composites[J]. Acs Applied Materials & Interfaces, 2015, 7(24): 13620-13626. [29] Xu Z, Peng L, Liu Y, et al. Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers and ultralightweight aerogels[J]. Chemistry of Materials, 2016, 29(1): 319-330. [30] Cao R, Chen Z, Wu Y, et al. Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties[J]. Composites Part A Applied Science & Manufacturing, 2017, 93: 100-106. [31] Wu S, Ladani R B, Zhang J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctio9nal properties of epoxy nanocomposites[J]. Carbon, 2015, 94: 607-618. [32] Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design, 2015, 88: 214-221. [33] Liu Z, Jiao W, Yan M, et al. A novel method for imitating nacre by utilizing magnetic graphene oxide and its magnetic field alignment in polymer nanocomposites[J]. Materials Research Express, 2018, 5(2): 1-11. [34] Liu R Y F, BernalLara T E,Hiltner A, et al. Polymer interphase materials by forced assembly[J]. Macromolecules, 2005, 38(11): 4819-4827. [35] Jarus D, Hiltner A, Baer E. Microlayer coextrusion as a route to innovative blend structures[J]. Polymer Engineering & Science, 2001, 41(12): 2162-2171. [36] Li X, Mckenna G B, Miquelard-Garnier G, et al. Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites[J]. Polymer, 2014, 55(1): 248-257. [37] Gao Y, Picot O T, Tu W, et al. Multilayer coextrusion of graphene polymer nanocomposites with enhanced structural organization and properties[J]. Journal of Applied Polymer Science, 2018, 135: 46041-46051. [38] Zhang Y F, Ren Y J, Bai S L. Vertically aligned graphene film/epoxy composites as heat dissipating materials[J]. International Journal of Heat & Mass Transfer, 2018, 118(18): 510-517. [39] Malekpour H, Chang K H, Chen J C, et al. Thermal conductivity of graphene laminate[J]. Nano Letters, 2014, 14(9): 5155-5161. [40] Liang J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Materials, 2009, 19(14): 2297-2302. [41] Huang T, Lu R, Su C, et al. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution[J]. Acs Appl Mater Interfaces, 2012, 4(5): 2699-2708. [42] Chandrasekaran S, Sato N, Tlle F, et al. Fracture toughness and failure mechanism of graphene based epoxy composites[J]. Composites Science & Technology, 2014, 97(11): 90-99. [43] Li Z, Young R J, Wilson N R, et al. Effect of the orientation of graphene-based nanoplatelets upon the Young′s modulus of nanocomposites[J]. Composites Science & Technology, 2016, 123: 125-133. [44] Chaichi M, Sharif F, Mazinani S. Preparation and evaluation of magnetic field-induced orientation on magnetic nanoparticles on PVA nanocomposite films[J]. Journal of Materials Science, 2018, 53(7): 5051-5062. [45] Shahil K M, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867. [46] Gao T, Yang Z, Chen C, et al. Three-dimensional printed thermal regulation textiles[J]. Acs Nano, 2017, 11(11): 11513-11520. [47] Zhao W, Kong J, Liu H, et al. Ultra-high thermally conductive and rapid heat responsive poly (benzobisoxazole) nanocomposites with self-aligned graphene[J]. Nanoscale, 2016, 48(8): 19983-19994. |
[1] | LING Xujie, CHEN Yinhong, LU Yizhou, FANG Yuan. Study on flame retardant properties and impact properties of flame retardant microcapsule modified glass fiber reinforced polymer composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 17-23. |
[2] | WANG Rui, MEI Qilin, DING Guomin, CHEN Shuhui, XU Jianrong, JIANG Duanyang. Folded graphene microsphere preparation and wettability modulation and its acetone sensing study [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(4): 14-19. |
[3] | ZHANG Dichao, YAN Gang, YU Xinfei. Experimental study on electrical heating stracture of composite based on laser-induced graphene [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(12): 80-86. |
[4] | YU Xinfei, YAN Gang, ZHOU Deng. Damage moniotoring for composite structures by using laser-induced graphene and electrical tomography [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(10): 17-23. |
[5] | LIU Huizhi, MEI Qilin, DING Guomin, XIAO Han, CHEN Shuhui, HUANG Zhixiong. Preparation and performance of graphene/modified polyetheretherketone [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(7): 13-18. |
[6] | HUANG Lixin, ZHANG Yuanxiu, HUANG Jun. Effects of interfacial van der Waals interaction on the elastic properties of graphene/polyethylene composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(7): 26-34. |
[7] | BI Yifan, CHENG Baofa, ZHU Xiangdong. Mechanical properties and thermal conductivity of polyamide 6/graphene oxide modified carbon fiber composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(3): 34-38. |
[8] | LIU Guanjun, WANG Sai, ZHANG Xin, WANG Lu, YANG Fan, WANG Rongguo. Research progress on gas barrier properties of graphene/polymer composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(10): 121-128. |
[9] | ZHU Yanan, LIU Yongye, YU Liang. Research progress on tribology of graphene and its composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(1): 124-136. |
[10] | ZHANG Peng-cheng, YU Yin-xin, LI En-guo, ZHAO Tian-yu, FU Tao. Mechanical properties of graphene functionally graded cantilever plate based on nonlinear gradient element [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(8): 15-22. |
[11] | HUANG Dong-hui, ZENG Shao-hua. Study on interfacial adhesion of amino-functionalized graphene-glass fiber reinforced epoxy composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(6): 27-32. |
[12] | PENG Chang-wei, HUANG Jun, WU Yu, YE Tai-zhi, HUANG Li-xin. Prediction of the mechanical properties of graphene/epoxy resin nanocomposites based on flexible node beam element and layered method [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(4): 18-26. |
[13] | HOU Jing, YANG Chen, LIU Qin-qin, LEI Yan-ni, XU Pei-jun. Properties of color carbon fiber prepared by self-assembly deposition of chemically modified graphene oxide [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(3): 45-50. |
[14] | TENG Jing-mei, HUANG Jun, HUANG Li-xin. Finite element analysis of graphene-reinforced functionally graded beams based on layered method [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(1): 13-21. |
[15] | LI Li-li, LI Qing, XIAO Wen-gang, CHAI Peng-jun. RESEARCH PROGRESS IN GRAPHENE/EPOXY RESIN NANOCOMPOSITES [J]. COMPOSITES SCIENCE AND ENGINEERING, 2021, 0(5): 110-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||