COMPOSITES SCIENCE AND ENGINEERING ›› 2025, Vol. 0 ›› Issue (3): 147-156.DOI: 10.19936/j.cnki.2096-8000.20250328.019
• REVIEW • Previous Articles
LOU Hangfei1, CHEN Wengang1,2*, ZHANG Wei1, CAI Xinyuan1, GONG Jinding1
Received:
2024-03-04
Online:
2025-03-28
Published:
2025-04-21
CLC Number:
LOU Hangfei, CHEN Wengang, ZHANG Wei, CAI Xinyuan, GONG Jinding. Current status and prospects of additive manufacturing in biomimetic energy absorbing structures[J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 147-156.
[1] LIU Y S, QI Y C, XU L H, et al. Study on energy absorption behavior of bionic tube inspired by feather shaft of bean goose[J]. Rendiconti Lincei-Scienze Fisiche e Naturali, 2022, 33(2): 363-374. [2] 黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化[J]. 北京理工大学学报, 2020, 40(3): 267-274. [3] TIWARI G, IQBAL M A, GUPTA P K. Energy absorption characteristics of thin aluminium plate against hemispherical nosed projectile impact[J]. Thin-Walled Structures, 2018, 126: 246-257. [4] LI Q X, ZHI X D, FAN F. Dynamic crushing of uniform and functionally graded origami-inspired cellular structure fabricated by SLM[J]. Engineering Structures, 2022, 262: 114327. [5] SHEN Y C, LIU Y. Bioinspired building structural conceptual design by graphic static and layout optimization: a case study of human femur structure[J]. Journal of Asian Architecture and Building Engineering, 2022, 21(5): 1762-1778. [6] 于征磊, 信仁龙, 陈立新, 等. 增材制造镍钛仿生结构缓冲吸能及自恢复特性研究[J]. 振动与冲击, 2022, 41(21), 279-285. [7] 于征磊, 陈立新, 徐泽洲, 等. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547. [8] SAJJAD R, CHAUHDARY S T, ANWAR M T, et al. A review of 4D printing-technologies, shape shifting, smart polymer based materials, and biomedical applications[J]. Advanced Industrial and Engineering Polymer Research, 2024, 7(1): 20-36. [9] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering, 2020, 181: 107496. [10] ZHANG H H, HUANG Z W, LI T, et al. Multiple performance evaluation of bionic thin-walled structures with different cross sections considering complex conditions[J/OL]. Journal of Environmental and Public Health, 2022[2024-03-04]. https://pubmed.ncbi.nlm.nih.gov/36213039. DOI: 10.1155/2022/2220633. [11] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures, 2018, 125: 76-88. [12] ZHANG R, PANG H, HAN D L, et al. Bionic design in anti-bending and lightweight tube based on the tarsometatarsus of ostrich[J]. Rendiconti Lincei-Scienze Fisiche e Naturali, 2020, 31(8): 189-201. [13] 邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究[J]. 高压物理学报, 2022, 36(3): 111-120. [14] ZHOU J F, LIU S F, GUO Z Q, et al. Study on the energy absorption performance of bionic tube inspired by yak horn[J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7246-7258. [15] TASDEMIRCI A, AKBULUT E F, GUZEL E, et al. Crushing behavior and energy absorption performance of a bio-inspired metallic structure: experimental and numerical study[J]. Thin-Walled Structures, 2018, 131: 547-555. [16] CHEN J X, DU S C, PAN L C, et al. The compressive property of a fiber-reinforced resin beetle elytron plate and its influence mechanism[J]. Journal of Applied Polymer Science, 2021, 138(29):50692. [17] HAN Q G, SHI S Q, LIU Z H, et al. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp[J]. Composites Part B: Engineering, 2020, 191: 107976. [18] DING Z Q, WANG B, XIAO H, et al. Hybrid bio-inspired structure based on nacre and woodpecker beak for enhanced mechanical performance[J]. Polymers, 2021, 13(21): 3681. [19] SHEN J H, XIE M Y, HUANG X D, et al. Behaviour of luffa sponge material under dynamic loading[J]. International Journal of Impact Engineering, 2013, 57: 17-26. [20] LI T-T, WANG H Y, HUANG S-Y, et al. Bioinspired foam composites resembling pomelo peel: structural design and compressive, bursting and cushioning properties[J]. Composites Part B: Engineering, 2019, 172: 290-298. [21] WEN Z, LI M. Compressive properties of functionally graded bionic bamboo lattice structures fabricated by FDM[J]. Materials, 2021, 14(16): 4410. [22] SHARMA D, HIREMATH S S. Bio-inspired repeatable lattice structures for energy absorption: experimental and finite element study[J]. Composite Structures, 2022, 283: 115102. [23] 黄江成, 肖正明, 刘涛, 等. 考虑分层梯度的筒状蜂窝基座隔振性能研究[J]. 振动与冲击, 2023, 42(5): 13-20. [24] SONG K H, LI D W, ZHANG C D, et al. Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties[J]. Composite Structures, 2023, 304(2): 116452. [25] SONG H, ZHANG C Y, WANG P Y, et al. A new type of hierarchical honeycomb in-plane impact study[J]. Materials (Basel), 2021, 14(8): 1917. [26] WANG Z G, SUN Y Y, WU H, et al. Low velocity impact resistance of bio-inspired building ceramic composites with nacre-like structure[J]. Construction and Building Materials, 2018, 169: 851-858. [27] WEI Z Q, XU X H. Gradient design of bio-inspired nacre-like composites for improved impact resistance[J]. Composites Part B: Engineering, 2021, 215: 108830. [28] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure[J]. Materials Design, 2019, 163: 107532. [29] GU X G, TAKAFFOLI M, HSIEH J A , et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters, 2016, 9(2): 317-323. [30] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials, 2017, 29(28): 1700060. [31] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. [32] JING S K, LI W, MA G H, et al. Enhancing mechanical properties of 3D printing metallic lattice structure inspired by bambusa emeiensis[J]. Materials, 2023, 16(7): 2545. [33] ZHANG Z, SONG B, FAN J X, et al. Design and 3D printing of graded bionic metamaterial inspired by pomelo peel for high energy absorption[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2(1): 100068. [34] YAN L L, ZHU K Y, ZHANG Y W, et al. Effect of absorbent foam filling on mechanical behaviors of 3D-printed honeycombs[J]. Polymers, 2020, 12(9): 2059. [35] FENG B S, ZHANG M, QIN C, et al. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth[J]. Bioactive Materials, 2023, 22: 127-140. [36] TAKEOKA Y, MATSUMOTO K, TANIGUCHI D, et al. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing[J]. PloS one, 2019, 14(3): e0211339. [37] LIAN M F, SUN B B, HAN Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials, 2021, 274: 120841. [38] HE J J, YUAN M Q, GONG Z, et al. Egg-shell structure design for stab resistant body armor[J]. Materials Today Communications, 2018, 16: 26-36. [39] AGUIRRE T G, FULLER L, INGROLE A, et al. Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications[J]. Scientific Reports, 2020, 10(1): 18916. [40] JIANG W, YAN L L, MA H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb[J]. Scientific Reports, 2018, 8(1): 4817. |
[1] | SUN Siyuan, SHENG Yapeng, DUAN Yuechen, QI Jiaqi. Flatwise compression property of topology optimized body centered cubic structures [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 7-14. |
[2] | ZHANG Jingli, KANG Yunjian. Experimental research on dynamic mechanical properties of concrete confined by carbon fiber sheet under high temperature [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 22-29. |
[3] | CHEN Weidong, YAO Kaifei, WANG Xuan, SHI Qiangbin. Study on compression-compression fatigue behavior of honeycomb sandwich structure after low-velocity impact [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 30-38. |
[4] | QI Chang, WU Pengcheng, YING Liang, YANG Shu. Experimental study on the forming limit of unidirectional glass fiber reinforced thermoplastic composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 46-53. |
[5] | DONG Chuanhe, SUN Xiaoyu, LI Wangxin, JIA Ruihao, ZHAO Xin. Cooling model and deformation study of 3D printing continuous carbon fiber composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 79-86. |
[6] | SUN Tingting, ZHANG Honghua, Muhammad Usman Ghani, LI Wei. Research on axial compression of concrete reinforced with carbon fibre triaxial fabric composites with different pore sizes [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 87-95. |
[7] | LU Xiaofeng, LIU Yuxuan, ZHAI Jiaqi, ZHANG Dongpo, MENG Xinmiao, FENG Peng. Study on the mechanical behavior and failure analysis of the sandwich shell in FRP wind turbine blade during lifting process [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 106-114. |
[8] | LU Zhenhua, ZHOU Songsong, ZHOU Jun, DU Yijun, LI Peng. Simulation of heat transfer and curing of pultruded H-shaped insulator core rod process [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(3): 121-129. |
[9] | GUAN Jiwen, WANG Yumei, WEI Lilan, KONG Defu, CHEN Hua, XIONG Chaohua. Study on the mechanical behavior and reinforcement ratio of eccentrically loaded coral aggregate concrete short columns reinforced with CFRP bar [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 1-11. |
[10] | CHENG Yanwen, ZHAO Fei, HUANG Zhenhui, ZHANG Qingsong, LI Liangyong, XI Xinqiang. Study on the effect of alkali-treated coir fibers on the mechanical properties of seawater sea sand concrete [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 20-27. |
[11] | WANG Shuo, JIA Chenhui, YANG Zhiming, YAO Yalin. Effect of water content on the performance of epoxy-anhydride resin and solutions [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 28-33. |
[12] | NIU Fangxu, SUN Chaoming, HE Jing, YIN Hang. Prediction of long beam bending properties for co-cured honeycomb sandwich structures [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 34-39. |
[13] | YI Wenzhao, LIU Lulu, XU Kailong, CHEN Wei. Numerical simulation of longitudinal debonding behavior in unidirectional fibre-reinforced composites considering hygrothermal treatment [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 46-53. |
[14] | YAN Shan, FU Tianyu, XU Jiazhong, SHI Xinmin. Fiber tension fuzzy control research based on improved genetic algorithm [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 54-61. |
[15] | GAO Wenming, LIU Chen, NIE Haiping, YANG Mingguang, WANG Xianfeng. Lamination design and performance analysis of composite aircraft auxiliary fuel tank structure [J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(2): 70-81. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||