[1] 钱建华, 刘坐镇, 周润培, 等. 大型风力发电机叶片专用高性能树脂[J]. 玻璃钢/复合材料, 2012(3): 70-74. [2] ROSU D, CASCAVAL C N, ROSU L. Synthesis and characterization of some composites with bioactive properties on the basis of vinyl ester resins[J]. e-Polymers, 2008, 8(1): 3377-3381. [3] 张黎黎, 张明奇, 陈凯锋, 等. 环氧耐磨绝缘防腐涂料制备及应用研究[J]. 材料开发与应用, 2023, 38(2): 84-90. [4] DAI Y R, FANG H, LU Z, et al. Toughening of vinyl ester resins by two-dimensional MXene nanosheets[J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651-1658. [5] XI J J, YU Z Q. Toughening mechanism of rubber reinforced epoxy composites by thermal and microwave curing[J]. Journal of Applied Polymer Science, 2018, 135(5): 45767. [6] IMANAKA M, NARITA I, NAKAMURA Y, et al. Effect of matrix deformability on the fracture properties of epoxy resins modified with core-shell and cross-linked rubber particles[J]. Journal of Applied Polymer Science, 2022, 139(23): 52316. [7] ESMAEILI A, SBARUFATTI C, JIMENEZ-SUAREZ A, et al. Synergistic effects of double-walled carbon nanotubes and nanoclays on mechanical, electrical and piezoresistive properties of epoxy based nanocomposites[J]. Composites Science and Technology, 2020, 200: 108459. [8] KAVIMANI V, PRAKASH K S, THANKACHAN T, et al. Synergistic improvement of epoxy derived polymer composites reinforced with graphene oxide (GO) plus titanium di oxide(TiO2)[J]. Composites Part B: Enginneering, 2020, 191: 107911. [9] YANG J Y, WANG H X, LIU X H, et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins[J]. Composites Science and Technology, 2021, 212: 108884. [10] MAROUF B T, MAI Y W, BAGHERI R, et al. Toughening of epoxy nanocomposites: nano and hybrid effects[J]. Polymer Reviews, 2016, 56(1): 70-112. [11] SUN L Y, YU D H, YANG L, et al. Improvements in multifunctional graphene oxide-based separation membranes: mechanism, modification and properties[J]. Materials Today Communications, 2022, 33: 104274. [12] ZHAO Y L, WU Z X, GUO S B, et al. Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation[J]. Composites Science and Technology, 2022, 217: 109082. [13] 杜群报, 王小玲, 盛军德. 石墨烯无溶剂纳米流体的制备及其在防腐导热涂料中的应用[J]. 材料开发与应用, 2022, 37(6): 102-107. [14] ZHANG M Y, LU J X, LI P, et al. Construction of high-efficiency fixing structure of waterborne paint on silicate-modified poplar surfaces by bridging with silane coupling agents[J]. Progress in Organic Coatings, 2022, 167: 106846. [15] 陈怿咨. 等离子体接枝PBO纤维及其热固性树脂基复合材料性能[D]. 大连: 大连理工大学, 2021. [16] AL-GAASHANI R, NAJJAR A, ZAKARIA Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J]. Ceramics International, 2019, 45(11): 14439-14448. [17] MA P C, KIM J K, TANG B Z. Functionalization of carbon nanotubes using a silane coupling agent[J]. Carbon, 2006, 44(15): 3232-3238. [18] WEI B G, CHANG Q, BAO C X, et al. Surface modification of filter medium particles with silane coupling agent KH550[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2013, 434: 276-280. [19] LIANG X, LI X J, TANG Y, et al. Hyperbranched epoxy resin-grafted graphene oxide for efficient and allpurpose epoxy resin modification[J]. Journal of Colloid and Interface Science, 2022, 611: 105-117. [20] LIU W, KONG J, TOH W E, et al. Toughening of epoxies by covalently anchoring triazole-functionalized stacked-cup carbon nanofibers[J]. Composites Science and Technology, 2013, 85: 1-9. [21] ZHANG W, SONG G, ZHU J, et al. Double macromolecules reinforced and toughened GO/epoxy resin composites: the critical role of a rigid-flexible interface[J]. Composites Communications, 2022, 34: 101262. [22] WANG T T, HUANG P, LI Y Q, et al. Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide[J]. Composites Communications, 2019, 14: 55-60. |