复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (2): 145-150.DOI: 10.19936/j.cnki.2096-8000.20250228.018

• 工程应用 • 上一篇    下一篇

基于机器视觉玻璃纤维束缺陷检测技术的研究

徐东亮, 薛紫阳*, 赖九衡   

  1. 武汉理工大学 机电工程学院,武汉 430070
  • 收稿日期:2023-11-22 出版日期:2025-02-28 发布日期:2025-03-25
  • 通讯作者: 薛紫阳(1996—),男,硕士研究生,研究方向为复合材料,1070879969@qq.com。
  • 作者简介:徐东亮(1970—),男,博士,副教授,研究方向为复合材料CAD/CAM及虚拟制造技术、检测技术与自动化装置、计算机应用技术。

Research on defect detection technology of glass fiber bundle based on machine vision

XU Dongliang, XUE Ziyang*, LAI Jiuheng   

  1. College of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2023-11-22 Online:2025-02-28 Published:2025-03-25

摘要: 玻璃纤维束是由成百上千根细小的玻璃纤维组合而成的整体,这种结构导致在纤维缠绕制品生产工艺过程中的断纱缺陷难以识别。针对此难题,提出了一种基于机器视觉检测玻璃纤维束是否有缺陷及缺陷位置定位的方法。利用工业相机实时拍摄纱路上玻璃纤维束的图像,并把图像传输到计算机,由计算机利用OpenCV库对每一帧玻璃纤维束的图像进行处理,得到每根玻璃纤维束的轮廓及缺陷特征,根据缺陷特征通过缺陷检测算法判断玻璃纤维束是否完全断开或部分断开,利用KNN算法判断缺陷所在位置。玻璃纤维束的运动速率为1 m/s,以30 fps的帧率采集600张图像进行实验验证,检测数据表明综合准确率达96.6%,满足玻璃纤维束缺陷检测的要求。

关键词: 机器视觉, 玻璃纤维束, 图像处理, 缺陷检测, KNN分类算法, 复合材料

Abstract: Glass fiber bundle is a whole composed of hundreds of small glass fibers. Because of this structure, it is difficult to identify yarn-breaking defects in the production process of filament winding products. In order to solve this problem, a method based on machine vision is proposed to detect the defects of glass fiber bundles and the location of defects. The real-time image of the glass fiber bundle on the yarn road is captured by the industrial camera, and the image is transmitted to the computer. The image of each frame of the glass fiber bundle is processed by the OpenCV library, and the outline and defect characteristics of each glass fiber bundle are obtained. According to the defect characteristics, whether the glass fiber bundle is completely or partially broken is judged by the defect detection algorithm, and the location of the defect is determined by using the KNN algorithm. The movement rate of glass fiber bundle is 1 m/s, and 600 images are collected at a frame rate of 30 fps for experimental verification. The detection data show that the comprehensive accuracy is up to 96.6%, which meets the requirements of glass fiber bundle defect detection.

Key words: machine vision, glass fiber bundle, image processing, defect detection, KNN classification algorithm, composites

中图分类号: