[1] 黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51. [2] 夏婉莹, 李志虎, 秦玉林, 等. 基于失效理论的复合材料力学性能预测及试验验证[J]. 复合材料科学与工程, 2023(9): 42-47. [3] 杜晨, 彭雄奇. 变厚度连续纤维增强复合材料铺层设计优化方法[J]. 应用数学和力学, 2022, 43(12): 1313-1323. [4] LEE J, CHO M, KIM H S, et al. Layup optimization of laminated composite patches considering uncertainty of material properties[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th. 2010: 2777. [5] 邵帅, 曹航, 王相平, 等. 航空发动机复合材料风扇叶片强度分析与铺层优化设计[J]. 燃气涡轮试验与研究, 2022, 35(4): 20-25. [6] LIU X Y, FEATHERSTON C A, KENNEDY D. Two-level layup optimization of composite laminate using lamination parameters[J]. Composite Structures, 2019, 211: 337-350. [7] MONTEMURRO M, PAGANI A, FIORDILINO G A, et al. A general multi-scale two-level optimisation strategy for designing composite stiffened panels[J]. Composite Structures, 2018, 201: 968-979. [8] IZZI M I, MONTEMURRO M, CATAPANO A, et al. A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[J]. Composite Structures, 2020, 237: 111908. [9] 刘峰, 闫清云, 王卓煜. 全复合材料太阳能无人机结构设计与分析[J]. 复合材料科学与工程, 2022(4): 32-39. [10] 段端祥, 赵晓昱. 纯电动汽车碳纤维复合材料电池箱体的铺层设计研究[J]. 玻璃钢/复合材料, 2018(6): 83-88. [11] 杜春志, 傅博宇, 邱致浩. 某型低速飞机复合材料机翼的设计与有限元分析[J]. 机械设计, 2019, 36(增刊2): 55-58. [12] 李林. 民用飞机金属/复合材料中央翼盒结构设计方案对比[J]. 民用飞机设计与研究, 2017(1): 45-49. [13] RODRÍGUEZ-SEGADE M, STEELANT J, HERNAANDEZ S, et al. Design optimization of multi-functional multi-lobe cryogenic fuel tank structures for hypersonic vehicles[J]. CEAS Space Journal, 2023, 15(6): 813-826. [14] REDDY D R, NAG M A, GUPTA M. Stress and deformation analysis of aircraft’s fuel tank under different inertia load cases in addition to a static test pressure using FEA[J]. Advanced Materials Research, 2015, 1115: 527-530. [15] 王振, 孙秦. 复合材料机翼整体油箱结构分析与设计[J]. 科学技术与工程, 2010, 10(24): 6095-6099. [16] 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报, 2019, 36(1): 1-12. [17] CHOI Y, AHN J, CHANG D. Time-dependent reliability analysis of plate-stiffened prismatic pressure vessel with corrosion[J]. Mathematics, 2021, 9(13): 1544. [18] TABAKOV P V, SUMMER E B. Lay-up optimization of multilayered anisotropic cylinders based on a 3-D elasticity solution[J]. Computers and Structures, 2006, 84(5-6): 374-384. [19] 耿发贵, 李强, 宋薛思, 等. 基于冲击损伤的复合材料气瓶铺层顺序优化设计[J]. 复合材料学报, 2022, 39(2): 777-787. [20] SONG Y, SUBERU B, SHANOV V, et al. Multiscale laminated composite materials[M]//SCHULZ M J, SHANOV V N, YIN Z. Nanotube Superfiber Materials. Boston: William Andrew Publishing, 2013: 627-647. [21] QIN J, WANG C, WANG Y, et al. Preparation carbon nanotube-decorated carbon fibers under low pressure for epoxy-based unidirectional hierarchical composites with enhanced interlaminar shear strength[J]. Polymer Testing, 2021, 93: 106892. [22] 张彬, 陈晓宁, 赵金龙, 等. 飞机复合材料热电耦合仿真分析研究[J]. 玻璃钢/复合材料, 2015(1): 33-37. [23] 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9): 4354-4365. [24] 解思适. 飞机设计手册: 第9册[M]. 北京: 航空工业出版社, 2001. [25] 张洁. 复合材料铺层设计准则的一些理解[J]. 科技创新导报, 2013(14): 57-58. [26] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [27] KAY G. Failure modeling of titanium 6AI-4V and aluminum 2024-T3 with the Johnson-Cook material model[M]. US: Office of Aviation Research, Federal Aviation Administration, 2003. |