[1] 宋泽鹏, 陆春华, 宣广宇, 等. 螺纹GFRP筋与混凝土黏结性能试验与理论计算[J]. 建筑材料学报, 2021, 24(4): 887-894. [2] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures, 2020, 242: 112185. [3] CHEN L, LIANG K, SHAN Z. Experimental and theoretical studies on bond behavior between concrete and FRP bars with different surface conditions[J]. Composite Structures, 2023, 309: 116721. [4] KOMAROV A I, MAKAROVA N V, TSUPRIK V G. Investigation on bond performance between different types of FRP-reinforced rebars and concrete[J]. IOP Conference Series: Materials Science and Engineering, 2020, 889(1): 012027. [5] SOLYOM S, BALÁZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials, 2020, 264: 119839. [6] LIANG K, CHEN L, SHAN Z, et al. Experimental and theoretical study on bond behavior of helically wound FRP bars with different rib geometry embedded in ultra-high-performance concrete[J]. Engineering Structures, 2023, 281: 115769. [7] SOLYOM S, BALÁZS G L. Analytical and statistical study of the bond of FRP bars with different surface characteristics[J]. Composite Structure, 2021, 270: 113953. [8] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction, 2005, 9(3): 203-213. [9] DIAB A M, ELYAMANY H E, HUSSEIN M A, et al. Bond behavior and assessment of design ultimate bond stress of normal and high strength concrete[J]. Alexandria Engineering Journal, 2014, 53(2): 355-371. [10] SHAN Z W, LIANG K, CHEN L J. Bond behavior of helically wound FRP bars with different surface characteristics in fiber-reinforced concrete[J]. Journal of Building Engineering, 2023, 65: 105504. [11] 易晓园. 基于PSO-RF的FRP筋与混凝土间黏结强度预测模型[J]. 复合材料科学与工程, 2024(8): 84-90. [12] 张芮椋, 薛新华. 基于基因表达式编程的NSM FRP-混凝土粘结强度预测模型[J]. 工程科学与技术, 2021, 53(2): 118-124. [13] AMIN M N, IQBAL M, JAMAL A, et al. GEP tree-based prediction model for interfacial bond strength of externally bonded FRP laminates on grooves with concrete prism[J]. Polymers, 2022, 14(10): 2016. [14] FERREIRA C. Gene expression programming: a new adaptive algorithm for solving problems[J]. Complex Systems, 2001, 13(2): 87-129. [15] ZHANG P C, JIA Y Y, GAO J, et al. Short-term rainfall forecasting using multi-layer perceptron[J]. IEEE Transactions on Big Data, 2020, 6(1): 93-106. [16] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test[J]. Composites Part B: Engineering, 2009, 40(8): 784-797. [17] FAHMY M F M, AHMED S A S, WU Z S. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials, 2021, 289: 122844. [18] WANG Q, ZHU H, TONG Y X, et al. Bond-slip behaviour of the CFRP ribbed bars anchored with the innovative additional ribs in concrete[J]. Composite Structures, 2021, 262: 113595. [19] ZHANG B, ZHU H, WU G, et al. Improvement of bond performance between concrete and CFRP bars with optimized additional aluminum ribs anchorage[J]. Construction and Building Materials, 2020, 241: 118012. [20] 单波, 佟广权, 刘其元. CFRP筋与海水海砂混凝土黏结性能试验[J]. 建筑科学与工程学报, 2020, 37(5): 113-123. [21] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. [22] 吴贤国, 刘鹏程, 陈虹宇, 等. 基于随机森林的高性能混凝土抗压强度预测[J]. 混凝土, 2022(1): 17-20, 24. [23] American Concrete Institute. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars: ACI 440.1 R-15[S]. Farmington Hills, Michigan: American Concrete Institute, 2015. [24] Canadian Standards Association. Design and construction of building structures with fiber-reinforced polymers: CAN/CSA S806-12[S]. Toronto: Canadian Standards Association, 2012. [25] Canadian Standards Association. Canadian highway bridge design code: CAN/CSA S6-06[S]. Toronto: Canadian Standards Association, 2006. [26] 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能[J]. 复合材料学报, 2022, 39(11): 5239-5250. |