复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (7): 123-131.DOI: 10.19936/j.cnki.2096-8000.20250728.015

• 工程应用 • 上一篇    下一篇

基于XGboost的FRP条带约束混凝土短柱的抗压强度预测方法

孙阳1, 田泽峰2   

  1. 1.辽宁理工职业大学 建筑工程学院,锦州 121001;
    2.辽宁耐砾新材科技有限公司,阜新 123000
  • 收稿日期:2024-11-18 出版日期:2025-07-28 发布日期:2025-08-22
  • 通讯作者: 刘华新(1966—),男,博士,教授,主要从事工程结构加固理论研究与应用方面的研究,lgliuhuaxin@163.com。
  • 作者简介:孙阳(1984—),女,硕士,教授,主要从事工程结构加固理论研究与应用方面的研究。
  • 基金资助:
    辽宁省教育厅基本科研项目(JYTMS20230973);锦州市指导性科技计划项目(JZ2022B029)

Compressive strength prediction of confined concrete cylinders with FRP strip based on XGboost

SUN Yang1, TIAN Zefeng2   

  1. 1. School of Architecture Engineering, Liaoning Vocational University of Technology, Jinzhou 121001, China;
    2. Liaoning Nai Li New Materials Technology Co., Ltd., Fuxin 123000, China
  • Received:2024-11-18 Online:2025-07-28 Published:2025-08-22

摘要: 纤维增强复合材料(Fiber Reinforced Polymer,FRP)约束混凝土在轴向压力作用下的极限状态模型可分为设计型模型和分析型模型,其极限状态中包含的轴压应力和应变构成了模型参数的基础,准确计算这些参数可为评估FRP布约束混凝土结构性能提供依据。通过对以设计为导向的FRP布部分约束混凝土的极限状态模型性能进行综合评估,发现现有模型普遍存在通用性差、预测精度低以及离散性大等问题。针对现有设计型模型的局限性,基于XGboost(extreme gradient boosting)机器学习方法,建立112个FRP条带约束混凝土圆柱数据库,对抗压强度和极限应变进行预测。研究结果表明:XGboost模型不仅克服了现有经验模型使用性差、预测精度不高、离散性大的缺点,还能反映各类参数对轴压应力及应变的重要性,且相较于已有设计型模型,基于机器学习模型的计算值和试验值吻合更好,偏差和随机性都显著减小,保证了预测结果的准确性和稳定性。

关键词: FRP布, 抗压强度, 极限压应变, XGboost, 约束混凝土

Abstract: The limit state model of fiber-reinforced polymer (FRP) concrete under axial compressive load can be divided into design and analytical models. The axial compressive stress and strain included in the limit state form the basis of the model parameters. Accurately calculating these parameters can provide a decision-making basis for evaluating the performance of FRP-reinforced concrete structures. Through a comprehensive evaluation of the limit state model performance of FRP-partially confined concrete with a design-oriented approach, it is shown that existing models generally exhibit poor generalizability, low prediction accuracy, and high dispersion. In response to the limitations of existing design models, the compressive strength and ultimate compressive strain of 112 FRP partially confined concrete cylinders were predicted using the XGboost (extreme gradient boosting) machine learning method. The research results indicate that the XGboost model not only overcomes the shortcomings of existing empirical models, such as poor generalizability, low prediction accuracy, and high dispersion but also reflects the importance of various parameters on axial compressive stress and strain. Moreover, compared to existing design models, the computational values based on the machine learning model align better with the experimental values, with significantly reduced deviation and randomness, ensuring the accuracy and stability of the prediction results.

Key words: FRP sheet, compressive strength, ultimate compressive strain, XGboost, confinement concrete

中图分类号: