[1] REIFSNIDER K L, SCHULTE K, DUKE J C. Long-term fatigue behavior of composite materials[M]//Long-term behavior of composites. West Conshohocken: ASTM International, 1983. [2] HIGHSMITH A L, REIFSNIDER K L. Stiffness-reduction mechanisms in composite laminates[M]//Damage in composite materials: basic mechanisms, accumulation, tolerance, and characterization. West Conshohocken: ASTM International, 1982. [3] HOOVER J W, KUJAWSKI D, ELLYIN F. Transverse cracking of symmetric and unsymmetric glass-fibre/epoxy-resin laminates[J]. Composites Science and Technology, 1997, 57(11): 1513-1526. [4] KATERELOS D G, MCCARTNEY L N, GALIOTIS C. Local strain re-distribution and stiffness degradation in cross-ply polymer composites under tension[J]. Acta Materialia, 2005, 53(12): 3335-3343. [5] AMARA K H, TOUNSI A, BENZAIR A. Transverse cracking and elastic properties reduction in hygrothermal aged cross-ply laminates[J]. Materials Science and Engineering: A, 2005, 396(1-2): 369-375. [6] OGIHARA S, TAKEDA N. Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates[J]. Composites Science and Technology, 1995, 54(4): 395-404. [7] JOFFE R, VARNA J. Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90 layers[J]. Composites Science and Technology, 1999, 59(11): 1641-1652. [8] KASHTALYAN M, SOUTIS C. Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(4): 335-351. [9] HASHIN Z. Analysis of orthogonally cracked laminates under tension[J]. Journal of Applied Mechanics, 1987, 54(4): 872-879. [10] VINOGRADOV V, HASHIN Z. Probabilistic energy based model for prediction of transverse cracking in cross-ply laminates[J]. International Journal of Solids and Structures, 2005, 42(2): 365-392. [11] HUANG Z Q, NIE G H, CHAN C K. An exact solution for stresses in cracked composite laminates and evaluation of the characteristic damage state[J]. Composites Part B: Engineering, 2011, 42(5): 1008-1014. [12] HUANG Z Q, YI S H, CHEN H X, et al. Parameter analysis of damaged region for laminates with matrix defects[J]. Journal of Sandwich Structures & Materials, 2021, 23(2): 580-620. [13] ZHANG J, FAN J, SOUTIS C. Analysis of multiple matrix cracking in[±θm/90n] S composite laminates. Part 1: In-plane stiffness properties[J]. Composites, 1992, 23(5): 291-298. [14] KASHTALYAN M, SOUTIS C. Analysis of local delaminations in composite laminates with angle-ply matrix cracks[J]. International Journal of Solids and Structures, 2002, 39(6): 1515-1537. [15] KASHTALYAN M, SOUTIS C. Analysis of composite laminates with intra-and interlaminar damage[J]. Progress in Aerospace Sciences, 2005, 41(2): 152-173. [16] TOUNSI A, AMARA K. Stiffness degradation in hygrothermal aged cross-ply laminate with transverse cracks[J]. AIAA Journal, 2005, 43(8): 1836-1843. [17] ZHANG H, MINNETYAN L. Variational analysis of transverse cracking and local delamination in[θm/90n] S laminates[J]. International Journal of Solids and Structures, 2006, 43(22-23): 7061-7081. [18] LI S, HAFEEZ F. Variation-based cracked laminate analysis revisited and fundamentally extended[J]. International Journal of Solids and Structures, 2009, 46(20): 3505-3515. [19] VINOGRADOV V, HASHIN Z. Variational analysis of cracked angle-ply laminates[J]. Composites Science and Technology, 2010, 70(4): 638-646. [20] HAJIKAZEMI M, SADR M H, HOSSEINI-TOUDESHKY H, et al. Thermo-elastic constants of cracked symmetric laminates: a refined variational approach[J]. International Journal of Mechanical Sciences, 2014, 89: 47-57. [21] HUANG Z Q, ZHOU J C, HE X Q, et al. Variational analysis for angle-ply laminates with matrix cracks[J]. International Journal of Solids and Structures, 2014, 51(21-22): 3669-3678. [22] HUANG Z Q, HE X Q. Stress distributions and mechanical properties of laminates[θm/90n] S with closed and open cracks in shear loading[J]. International Journal of Solids and Structures, 2017, 118: 97-108. [23] NUISMER R J, TAN S C. Constitutive relations of a cracked composite lamina[J]. Journal of Composite Materials, 1988, 22(4): 306-321. [24] TAN S C, NUISMER R J. A theory for progressive matrix cracking in composite laminates[J]. Journal of Composite Materials, 1989, 23(10): 1029-1047. [25] LUNDMARK P, VARNA J. Crack face sliding effect on stiffness of laminates with ply cracks[J]. Composites Science and Technology, 2006, 66(10): 1444-1454. [26] HASHIN Z. The spherical inclusion with imperfect interface[J]. Journal of Applied Mechanics, 1991, 58(2): 444-449. [27] HASHIN Z. Thin interphase/imperfect interface in elasticity with application to coated fiber composites[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(12): 2509-2537. [28] WÜRKNER M, BERGER H, GABBERT U. Numerical study of effective elastic properties of fiber reinforced composites with rhombic cell arrangements and imperfect interface[J]. International Journal of Engineering Science, 2013, 63: 1-9. [29] WÜRKNER M, BERGER H, GABBERT U. Numerical investigations of effective properties of fiber reinforced composites with parallelogram arrangements and imperfect interface[J]. Composite Structures, 2014, 116: 388-394. [30] HUANG Z Q, HE X Q, LIEW K M. A sensitive interval of imperfect interface parameters based on the analysis of general solution for anisotropic matrix containing an elliptic inhomogeneity[J]. International Journal of Solids and Structures, 2015, 73: 67-77. [31] YU H Y. A new dislocation-like model for imperfect interfaces and their effect on load transfer[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(9-10): 1057-1062. [32] HUANG Z Q, NIE G H, CHAN C K. Solution of the plane problem for anisotropic media containing an elliptic inhomogeneity with dislocation-like interface[J]. Acta Mechanica, 2013, 224(11): 2863-2880. |