[1] 薛忠民, 王占东, 尹证. 中国工业复合材料发展回顾与展望[J].复合材料科学与工程, 2021(6): 119-128. [2] 陈博. 国内外复合材料工艺设备发展述评之五——拉挤成型[J].复合材料科学与工程, 2023(增刊1): 44-63. [3] GIRSHICK R. Fast R-CNN[C]//IEEE.2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448. [4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [5] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. [6] 向宽, 李松松, 栾明慧, 等. 基于改进Faster RCNN的铝材表面缺陷检测方法[J].仪器仪表学报, 2021, 42(1): 191-198. [7] 陆尧, 薛林, 王云森, 等. 基于Cascade RCNN的热轧带钢表面缺陷检测[J].仪表技术与传感器, 2023(8): 101-106, 126. [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788. [9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[M]//LEIBE B, MATAS J, SEBE N, et al. Computer Vision-ECCV 2016: vol. 9905. Cham: Springer International Publishing, 2016: 21-37. [10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. [11] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 10778-10787. [12] TIAN S, Li X, FANG X, et al. Surface defect detection method of wooden spoon based on improved YOLOv5 algorithm[J].BioResources, 2023, 18(4): 7713-7730. [13] LI F, XIAO K, HU Z, et al. Fabric defect detection algorithm based on improved YOLOv5[J].The Visual Computer, 2024, 40(4): 2309-2324. [14] 蒋博, 万毅, 谢显中. 改进YOLOv5s的轻量化钢材表面缺陷检测模型[J].计算机科学, 2023, 50(增刊2): 271-277. [15] 渠逸, 汪诚, 余嘉博, 等. 基于YOLOv5的表面缺陷检测优化算法[J].空军工程大学学报, 2023, 24(5): 80-87. [16] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7029-7038. [17] ZHOU L, RAO X, LI Y, et al. A lightweight object detection method in aerial images based on dense feature fusion path aggregation network[J].ISPRS International Journal of Geo-Information, 2022, 11(3): 189. [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision-ECCV 2018: vol. 11211. Cham: Springer International Publishing, 2018: 3-19. [19] QUAN Y, ZHANG D, ZHANG L, et al. Centralized feature pyramid for object detection[J].IEEE Transactions on Image Processing, 2023, 32: 4341-4354. [20] CHEN J, KAO S-H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 12021-12031. [21] MA X, GUO F M, NIU W, et al. PCONV: the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5117-5124. [22] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL].(2023-12-29)[2024-03-20].https://arxiv.org/abs/2312.17663. |