[1] KONSTANTOPOULOS S, HUEBER C, ANTONIADIS I, et al. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: a review of challenges and solutions[J].Advanced Manufac Turing: Polymer & Composites Science, 2019, 5(3): 85-99. [2] 马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化[J].复合材料学报, 2021, 38(10): 3302-3313. [3] 赵安安, 王林文, 王浩军, 等. 复合材料液体成型技术的航空应 用[J].工程塑料应用, 2018, 46(4): 145-150. [4] 杨旭静, 王跃飞, 韦凯, 等. 基于孔隙控制的车身结构树脂传递模塑成型工艺设计[J].复合材料学报, 2017, 34(5): 970-977. [5] PANTALONI D, BOURMAUD A, BALEY C, et al. A review of permeability and flow simulation for liquid composite moulding of plant fibre composites[J].Materials, 2020, 13(21): 4811. [6] DEI SOMMI A, LIONETTO F, MAFFEZZOLI A. An overview of the measurement of permeability of composite reinforcements[J].Polymers, 2023, 15(3): 728. [7] BODAGHI M, LOMOV S V, SIMACEK P, et al. On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: a review[J].Composites Part A: Applied Science and Manufacturing, 2019, 120: 188-210. [8] MAY D, AKTAS A, ADVANI S G, et al. In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise[J].Composites Part A: Applied Science and Manufacturing, 2019, 121: 100-114. [9] YONG A X H, AKTAS A, MAY D, et al. Out-of-plane permeability measurement for reinforcement textiles: a benchmark exercise[J].Composites Part A: Applied Science and Manufacturing, 2021, 148:106480. [10] YANG B, SUN Y, TROCHU F, et al. Performance evaluation of unidirectional molds used for measuring saturated transverse permeability of engineering textiles[J].Composites Part A: Applied Science and Manufacturing, 2023, 169: 107524. [11] HUANG W, CAUSSE P, HU H, et al. Numerical and experimental investigation of saturated transverse permeability of 2D woven glass fabrics based on material twins[J].Polymer Composites, 2020, 41(4): 1341-1355. [12] 杨斌, 王继辉, 冯雨薇, 等. 织物增强复合材料Micro-CT辅助数值仿真技术研究进展[J].复合材料学报, 2023, 40(10): 5466-5485. [13] ALI M A, UMER R, KHAN K A, et al. XCT-scan assisted flow path analysis and permeability prediction of a 3D woven fabric[J].Composites Part B: Engineering, 2019, 176: 107320. [14] ALI M A, UMER R, KHAN K A, et al. Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications[J].Aerospace Science and Technology, 2018, 82: 520-533. [15] 曹鹏军, 赵文斌, 杨斌, 等. 基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测[J].复合材料学报, 2023, 40(3): 1751-1763. [16] AGRAWAL P, MASCINI A, BULTREYS T, et al. The impact of pore-throat shape evolution during dissolution on carbonate rock permeability: pore network modeling and experiments[J].Advances in Water Resources, 2021, 155: 103991. [17] CHEN S, QIN C, GUO B. Fully implicit dynamic pore-network modeling of two-phase flow and phase change in porous media[J].Water Resources Research, 2020, 56(11): e2020WR028510. [18] BAQER Y, CHEN X. A review on reactive transport model and porosity evolution in the porous media[J].Environmental Science and Pollution Research, 2022, 29(32): 47873-47901. [19] TEMBELY M, ALSUMAITI A M, ALAMERI W S. Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography[J].Energy Reports, 2021, 7: 1460-1472. [20] MAHMOODLU M G, RAOOF A, BULTREYS T, et al. Large-scale pore network and continuum simulations of solute longitudinal dispersivity of a saturated sand column[J].Advances in Water Resources, 2020, 144: 103713. [21] AN S, HASAN S, ERFANI H, et al. Unravelling effects of the pore-size correlation length on the two-phase flow and solute transport properties: GPU-based pore-network modeling[J].Water Resources Research, 2020, 56(8): e2020WR027403. [22] XIONG Q, BAYCHEV T G, JIVKOV A P. Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[J].Journal of Contaminant Hydrology, 2016, 192: 101-117. [23] DONG H, BLUNT M J. Pore-network extraction from micro-computerized-tomography images[J].Physical Review E, 2009, 80(3):036307. [24] PRODANOVIĆ M, LINDQUIST W B, SERIGHT R S. 3D image-based characterization of fluid displacement in a Berea core[J].Advances in Water Resources, 2007, 30(2): 214-226. [25] 闫国亮. 基于数字岩心储层渗透率模型研究[D]. 青岛: 中国石油大学(华东), 2013. [26] DONG H, FJELDSTAD S, ALBERTS L, et al. Pore network modelling on carbonate: a comparative study of different micro-CT network extraction methods[C]//The International Symposium of the Society of Core Analysts. Abu Dhabi: Society of Core Analysts, 2008: 1-12. [27] WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J].Advances in Water resources, 2013, 51: 217-246. [28] SHEPPARD A P, SOK R M, AVERDUNK H. Techniques for image enhancement and segmentation of tomographic images of porous materials[J].Physica A: Statistical Mechanics and its Applications, 2004, 339(1-2): 145-151. [29] RABBANI A, JAMSHIDI S, SALEHI S. An automated simple algorithm for realistic pore network extraction from micro-tomography images[J].Journal of Petroleum Science and Engineering, 2014, 123: 164-171. [30] GOSTICK J T. Versatile and efficient pore network extraction method using marker-based watershed segmentation[J].Physical Review E, 2017, 96(2): 023307. [31] LI Y, CHI Y, HAN S, et al. Pore-throat structure characterization of carbon fiber reinforced resin matrix composites: employing Micro-CT and Avizo technique[J].PLOS One, 2021, 16(9): e0257640. [32] MAZLAN N, YAZID H, AROF H, et al. Automated microaneurysms detection and classification using multilevel thresholding and multilayer perceptron[J].Journal of Medical and Biological Engineering, 2020, 40: 292-306. [33] BEUCHER S, MEYER F. The morphological approach to segmentation: the watershed transformation[M]//Mathematical Morphology in Image Processing. Boca Raton, Florida: CRC Press, 2018: 433-481. [34] WU T, PAN L, ZHANG J, et al. Balanced chamfer distance as a comprehensive metric for point cloud completion[J].Advances in Neural Information Processing Systems, 2021, 34: 29088-29100. [35] YOUSSEF S, ROSENBERG E, GLAND N, et al. High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous cabonates[C]//The SPE/EAGE Reservoir Characterization and Simulation Conference. Abu Dhabi: OnePetro, 2007. [36] 詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J].复合材料学报, 2021, 38(12): 4180-4189. [37] SCIENTIFIC T F. User’s guide Avizo software 2019[Z].Berlin, Germany: Konrad-Zuse-Zentrum fur Informationstechnik, 2019. [38] 雷健, 潘保芝, 张丽华. 基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J].地球物理学进展, 2018, 33(2): 653-660. [39] AKBARI M, SINTON D, BAHRAMI M. Viscous flow in variable cross-section microchannels of arbitrary shapes[J].International Journal of Heat and Mass Transfer, 2011, 54(17-18): 3970-3978. |