[1] 方国东. 三维四向碳/环氧编织复合材料积累损伤及失效分析[D]. 哈尔滨: 哈尔滨工业大学, 2010. [2] DIXIT A, MALI H S, MISRA R K. Unit cell model of woven fabric textile composite for multiscale analysis[J]. Procedia Engineering, 2013, 68: 352-358. [3] 张宪丰, 管国阳. 平纹编织复合材料吸湿行为试验及有限元模拟[J]. 复合材料科学与工程, 2020(11): 19-25. [4] MIRAVETE A, BIELSA J M, CHIMINELLI A, et al. 3D mesomechanical analysis of three axial braided composite materials[J]. Composites Science and Technology, 2006, 66(15): 2954-2964. [5] TANG X, WHITCOMB J D, KELKAR A D, et al. Progressive failure analysis of 2×2 braided composites exhibiting multiscale heterogeneity[J]. Composites Science and Technology, 2006, 66(14): 2580-2590. [6] HUANG Y J, YANG Z J, REN W Y, et al. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model[J]. International Journal of Solids and Structures, 2015, 67-68: 340-352. [7] ISART N, El SAID B, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230. [8] ZHANG D T, FENG G Y, SUN M Y, et al. Finite element analysis of mesh size effect of 3D angle-interlock woven composites using voxel-based method[J]. Applied Composite Materials, 2018, 25(4): 905- 920. [9] 陈志明. 三维角联锁织物基本力学性能及其变形行为分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. [10] LIONEL G, ROMAIN M C. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite mate-rials[J]. Computational Materials Science, 2013, 77: 430-439. [11] WANG B, FANG G D, LIU S, et al. Progressive damage analysis of 3D braided composites using FFT-based method[J]. Composite Structures, 2018, 192: 255-263. [12] KABEL M, MERKERT D, SCHNEIDER M. Use of composite voxels in FFT-based homogenization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 168-188. [13] KABEL M, BÖHLKE T, SCHNEIDER M. Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations[J]. Computational Mechanics, 2014, 54(6): 1497-1514. [14] MAREAU C, ROBERT C. Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques[J]. Mechanics of Materials, 2017, 105: 157-165. [15] MERKERT D, ANDRÄ H, KABEL M, et al. An efficient algorithm to include sub-voxel data in FFT-based homogenization for heat conductivity[M]//Recent Trends in Computational Engineering-CE2014. Berlin: Springer, 2015: 267-279. |