Fiber Reinforced Plastics/Composites ›› 2019, Vol. 0 ›› Issue (9): 110-118.
• REVIEW • Previous Articles Next Articles
YANG Kun, ZHANG Wei, DU Du
Received:
2018-10-18
Online:
2019-09-28
Published:
2019-09-28
CLC Number:
YANG Kun, ZHANG Wei, DU Du. THE RESEARCH PROGRESS OF DYNAMIC CHARACTERISTICS OF THE COMPOSITE SANDWICH STRUCTURE[J]. Fiber Reinforced Plastics/Composites, 2019, 0(9): 110-118.
[1] Edward M, Kerwin J. Damping of flexural waves by a constrained viscoelastic layer[J]. The Journal of the Acoustical Society America, 1959, 31(7): 952-962. [2] Mead D J. The double-skin damping configuration[R]. Southampton: University of Southampton, Department of Aeronautics & Astronautics, 1962. [3] Raoand Y V K. Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores[J]. Journal of Sound and Vibration, 1974, 34(3): 309-326. [4] Kant T, Swaminathan K. Analytical solution for free vibration of laminated composite and sandwich plates base on a higher-order refined theory[J]. Composite Structrues, 2001, 53(1): 73-85. [5] Kristensena R F, Nielsen K L, Mikkelsen L P. Numerical studies of shear damped composite beams using aconstrained damping layer[J]. Composite Structures, 2008, 83: 304-311. [6] WU Z, CHEN W J. An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams[J]. Composite Structures, 2008, 84: 337-349. [7] Eric M A, Daniel J I. Effects of modeling assumptions on loss factors predicted for viscoelastic sandwich beams[C]//Smart Structure and Materials 1999: Passive Damping and Isolation. Phoenix, America: 1999. [8] Eric M A, Daniel J I. Studies on the kinematic asumptions for sandwich beams[C]//Conference on Passive Damping and Isolation, at the Smart Structure and Materials. San Diego, America: 1997. [9] Yong B C, Ronald C A. An improved theory and finite-element model for laminated composite and sandwich beams using first-order Zig-zag sublaminate approximations[J]. Composite Structrues, 1997, 34(3-4): 281-298. [10] Kapuria S, Dumir P C, Jain N K. Assessment of Zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams[J]. Composite Structures, 2004, 64(3-4): 317-327. [11] 杨挺青. 粘弹性力学[M]. 武汉: 华中理工大学出版社, 1990. [12] Hocine B, Mourad I. Computation of the relaxation and creep functions of elastomers from harmonic shear modulus[J]. Mechanics of Time-Dependent Materials, 2011, 15(2): 119-138. [13] 孙海忠, 张卫. 服从分数导数kelvin本构模型的粘弹性阻尼器的阻尼性能分析及试验研究[J]. 振动工程学报, 2008, 21(1): 48-53. [14] Golla D F, Hughes P C. Dynamics of viscoelastic structures-a time-domain, finite element formulation[J]. Journal of Applied Mechanics, 1985, 52(4): 897-907. [15] 郭亚娟, 李惠清, 孟光, 等. 粘弹性自由层阻尼悬臂梁的有限元模型[J]. 上海交通大学学报, 2007, 41(9): 1538-1541. [16] Hong Y, He X D, Wang R G. Vibration and damping analysis of a composite blade[J]. Materials & Design, 2011, 34: 98-105. [17] Zhang S H, Chen H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1): 63-69. [18] Meunier M, Shenoi R A. Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory[J]. Composite Structures, 2001, 54(2-3): 243-254. [19] Eslie R, Castro M. Vibration-based stiffness and damping matrices updating of a sandwich composite beam[D]. Mayaguez: University of Puerto Rico, 2005. [20] Mctavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Journal of Vibration and Acoustics, 1993, 115(1): 103-110. [21] Barbosa F S, Farage M C R. A finite element model for sandwich viscoelastic beams: experimental and numerical assessment[J]. Journal of Sound and Vibration, 2008, 317(1-2): 91-111. [22] Aytac A, Ibrahim O. Vibration analysis of composite sandwich beams with viscoelasticcore by using differential transform method[J]. Composite Structures, 2010, 92(12): 3031-3039. [23] Zhou J P, Feng Z G. Transient response analysis of one-dimensional distributed parameter systems[J]. International Journal of Solids and Structures, 1999, 36(19): 2807-2824. [24] Yang B, Tan C A. Transfer functions of one-dimensional distributed parameter system[J]. AIAA Journal, 1992, 59(4): 1009-1014. [25] 李恩奇. 基于分布参数传递函数方法的被动约束层阻尼结构动力学分析[D]. 长沙: 国防科学技术大学, 2007. [26] 李恩奇, 李道奎, 唐国金, 等. 基于传递函数方法的局部覆盖环状CLD圆柱壳动力学分析[J]. 航空学报, 2007, 28(6): 1487-1494. [27] 李恩奇, 唐国金, 雷勇军. 约束层阻尼板动力学问题的传递函数解[J]. 国防科技大学学报, 2008, 30(1): 1-5. [28] 李海阳. 数学物理问题的数值分布传递函数方法[D]. 长沙: 国防科技大学, 1999. [29] Chyanbin H, Chang W C, Gai H S. Vibration suppression of composite sandwich beams[J]. Journal of Sound and Vibration, 2004, 272(1-2): 1-20. [30] Jian S H, Chyanbin H. Free vibration of delaminated composite sandwich beams[J]. AIAA Journal, 1995, 33(10): 1911-1918. [31] Zapfe J A, Lesieutre G A. A discrete layer beam finite element for the dynamic analysis of composite sandwich beams with integral damping layers[J]. Composite & Structrues, 1999, 70(6): 647-666. [32] Zapfe J A, Lesieutre G A, Wodfke H W. Damping analysis of composite sandwich beams using a discrete layer finite element with comparison to experimental data[J]. AIAA Journal, 1995, 12(13): 470-479. [33] Ganapathia M, Patela B P, Boisseb P. Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis[J]. Composites: Part B, 1999, 30(3): 245-256. [34] Plagianakos T S, Saravanos D A. High-order layer wise mechanics and finite element for the damped dynamic characteristics of sandwich composite beams[J]. International Journal of Solids and Structures, 2004, 41(24-25): 6853-6871. [35] Marco G, Alexander T, Marco D S. C0 beam elements based on the refined Zigzag theory for multilayered composite and sandwich laminates[J]. Composite Structures, 2011, 93(11): 2882-2894. [36] Arvin H, Sadighi M, Ohadi A R. A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core[J]. Composite Structures, 2010, 92(4): 996-1008. [37] 李天奇, 雷勇军, 唐国金, 等. 基于传递函数方法的约束层阻尼梁动力学分析[J]. 振动与冲击, 2007, 26(2): 75-78. [38] Chaudry A H. Passive stand-off layer damping treatment: theory and experiments[D]. Baltimore: Univeristy of Maryland, 2006. [39] Susanto K S. Design, modeling and analysis of piezoelectric forceps actuator[D]. California: University of Southern Colifornia, 2007. [40] 刘畅, 郭靳时. 用差分法求解正交各向异性夹层板的弹性弯曲方程[J]. 吉林建筑工程学院学报, 1999(1): 1-7. [41] 张晓芳. 表层正交异性材料夹层板弯曲平衡方程及边界条件[J]. 江苏理工大学学报, 1998, 19(5): 94-100. [42] Cupial P, Niziol J. Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer[J]. Journal of Sound and Vibration, 1995, 183(1): 99-114. [43] Terry H, Liviu L. Flexural free vibration of sandwich flat panels with laminated anisotropic face sheets[J]. Journal of Sound and Vibration, 2006, 297(3-5): 823-841. [44] Khare R K, Kant T, Garg A K. Free vibration of composite and sandwich laminates with a higher-order facet shell element[J]. Composite Structures, 2004, 65(3-4): 405-418. [45] Rao M K, Desai Y M. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory[J]. Composite Structrues, 2004, 63(3-4): 361-373. [46] Liu Q A, Zhao Y. Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model[J]. Composite Structures, 2006, 72(8): 364-374. [47] Meunier M, Shenoi R A. Dynamic ananlysis of compisite sandwich plate with damping modelled using high-order shear deformation theory [J]. Composite Structures, 2001, 54(2-3): 243-254. [48] Lee L J, Fan Y J. Bending and vibration analysis of composite sandwich plates[J]. Computers & Structures, 1996, 60(1): 103-112. [49] 白瑞祥, 张志峰, 陈浩然. 基于Zig-Zag变形假定的复合材料夹层板的自由振动[J]. 力学季刊, 2004, 25(4): 528-534. [50] Wu Z, Chen W J. Free vibration of laminated composite and sandwich plates using global-local higher-order theory[J]. Journal of Sound and Vibration, 2006, 298(1-2): 333-349. [51] Etkovic M C, Vuksanovic D. Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model[J]. Composite Structures, 2009, 88(2): 219-227. [52] 师俊平, 刘协会, 赵巨才, 等. 复合材料夹层板的振动及阻尼分析[J]. 应用力学学报, 1996, 13(2): 132-136. [53] Nayak A K, Moy S S J, Shenoi R A. Free vibration analysis of composite sandwich plates based on reddy′s higher-order theory[J]. Composites:Part B, 2002, 33(7): 505-519. [54] Nayak A K, Shenoi R A, Moy S S J. Transient response of composite sandwich plates[J]. Composite Structrues, 2004, 64(3-4): 249-267. [55] Dai X J, Lin J H, Chen H R. Random vibration of composite structures with an attached frequency-dependent damping layer[J]. Composites:Part B, 2008, 39(2): 405-413. [56] Cunningham P R, White R G, Aglietti G S. The effects of various design parameters on the free vibration of doubly curved composite sandwich panels[J]. Journal of Sound and Vibration, 2000, 230(3): 617-648. [57] Sung Y, Kam Y S. A finite element formulation for composite laminates with smart constrained layer damping[J]. Advances in Engineering Software, 2000, 31(8-9): 529-537. [58] Gibson L J, Ashby M F. Cellular Solids. Structures and properties[M]. Oxford: Pergamon Press, 1988. [59] Karako A, Freund J. Experimental studies on mechanical properties of cellular structures using nomex honeycomb cores[J]. Composite Structures, 2012, 94(6): 2017-2024. [60] Cheng Q H, Lee H P, Lu C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J]. Composite Structures, 2005, 74(2): 226-236. [61] 富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999, 31(1): 114-123. [62] Fung T C, Tan K H, Lok T S. Elastic constants for z-core sandwich panels[J]. Journal of Structural Engineering, 1994, 120(10): 3046-3055. [63] Nordstrand T, Carlsson L A, Allen H G. Transverse shear stiffness of structural core sandwich[J]. Composite Structrues, 1994, 27(3): 317-348. [64] Lok T S, Cheng Q H. Elastic stiffness properties and behaviour of truss-core sandwich panel[J]. Journal of Structural Engineering, 2000, 126(5): 552-559. [65] Taylor C M, Smith C W, Miller W. The effects of hierarchy on the in-plane elastic properties of honeycombs[J]. International Journal of Solids and Structures, 2011, 48(9): 1330-1339. [66] 吴晖, 俞焕然. 四边简支正交各向异性波纹型夹心矩形夹层板的固有频率[J]. 应用数学和力学, 2001, 22(9): 919-927. [67] Lok T S, Cheng Q H. Free and forced vibration of simply supported, orthotropic sandwich panel[J]. Computer & Structrues, 2001, 79(3): 301-312. [68] Lok T S, Cheng Q H. Bending and forced vibration response of clamped orthotropic thick plate and sandwich panel[J]. Journal of Sound and Vibration, 2001, 245(1): 63-78. [69] Lok T S, Cheng Q H. Free vibration of clamped orthotropic sandwich panel[J]. Journal of Sound and Vibration, 2000, 229(2): 311-327. [70] Li Y Q, Li F, Zhu D W. Geometrically nonlinear free vibrations of the symmetric rectangular honeycomb sandwich panels with simply supported boundaries[J]. Composite Structrues, 2010, 92(5): 1110-1119. [71] Li Y Q, Zhu D W. Geometrically nonlinear forced vibrations of the symmetric honeycomb sandwich panels affected by the water[J]. Composite Structures, 2011, 93(2): 880-888. [72] Saha G C, Kalamkarov A L, Georgiades A V. Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials[J]. Composites: Part A, 2007, 38(6): 1533-1546. [73] Marc R B, Xavier B. Measurement of relevant elastic and damping material properties in sandwich thick plates[J]. Journal of Soundand Vibration, 2011, 330(25): 6098-6121. [74] 徐胜今, 孔宪仁, 王本利. 正交异性蜂窝夹层板动静力学问题的等效分析方法[J]. 复合材料学报, 2000, 17(3): 92-96. [75] 刘畅, 钟善桐, 苗若愚. 正交各向异性夹层板的基本方程[J]. 吉林建筑工程学院学报, 1997(4): 1-6. [76] 徐胜今, 宋宇, 王本利. 正交异性蜂窝夹层板的动力学分析[J]. 复合材料学报, 1998, 15(4): 74-80. [77] 王萍萍, 罗文波, 邹经湘. 碳纤维蜂窝夹层结构动特性分析[J]. 复合材料学报, 2002, 19(6): 134-137. [78] Liu J, Au F T K, Cheng Y S. A semi-analytical method for bending, buckling and free vibration analyses of sandwieh panels with square honeycomb cores[J]. International Journal of Structural Stability and Dynamics, 2010, 10(1): 127-151. [79] Xin F X, Lu T J. Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: sound radiation[J]. Computers & Structures, 2011, 89(5-6): 507-516. [80] Xin F X, Lu T J. Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption[J]. Composites Science and Technology, 2010, 70(15): 2198-2206. [81] 习仲萍, 曹建英. 正交加筋双层板的挠曲微分方程[J]. 现代机械, 2011(1): 55-56. [82] 刘均, 程远胜. 考虑芯层离散特性的方形蜂窝夹层板自由振动分析[J]. 固体力学学报, 2009, 30(1): 90-94. [83] 刘均, 程远胜. 考虑几何特征的方形蜂窝夹层板总体屈曲载荷求解方法[J]. 工程力学, 2009, 26(7): 245-251. [84] 吴梵, 杨坤, 梅志远. 正交加筋复合材料夹层板弯曲问题求解[J]. 船舶力学, 2013, 17(1-2): 92-101. [85] 杨坤, 梅志远, 李华东. 正交加筋复合材料夹层板自由振动分析[J]. 上海交通大学学报, 2014, 48(6): 863-869. [86] Burton W S, Noor A K. Assessment of continuum models for sandwich panel honeycomb cores[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 145(3-4): 341-360. [87] Burlayenkoa V N, Sadowskib T. Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates[J]. International Journal of Non-LinearMechanics, 2010, 45(10): 959-968. [88] Rathbun H J, Radford D D, Xue Z. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43 (6): 1746-1763. [89] Wang T, Ma M, Yu W L, et al. Mechanical response of square honeycomb sandwich plate with asymmetric face sheet subjected to blast loading[J]. Procedia Engineering, 2011, 23: 457-463. [90] Russell B P, Liu T, Fleck N A. The soft impact of composite sandwich beams with a square-honeycomb core[J]. International Journal of Impact Engineering, 2011, 48: 65-81. [91] Chen Y, Zhang Z Y, Wang Y. Crush dynamics of square honeycomb thin rubber wall[J]. Thin-Walled Structures, 2009, 47(12): 1447-1456. [92] Dharmasena K P, Wadley H N G, Xue Z Y. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. |
[1] | ZHANG Qian, ZHANG Yifan, ZOU Qi, ZHANG Peng, JIAO Yanan, AN Liuxu, LIU Yanfeng, ZHANG Daijun, HAO Junjie, CHEN Li. Connection performance and failure mechanisms of three-dimensional woven composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 5-11. |
[2] | YAN Jiqiang, XIE Zongyou, LI Jun, ZOU Qi, LEI Shuai, CAO Tienan, ZHANG Daijun. Effect of ply angle on anti-high speed impact properties of polyimide fiber reinforced composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 12-18. |
[3] | LÜ Xujin, HUO Hongyu, PENG Gongqiu, ZHANG Baoyan, YE Jinqiu, LIU Yong. Electrospun PPESK fiber mats interlayer toughened carbon fiber/epoxy resin composite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 19-27. |
[4] | GUO Miaocai. The interlayer structures and lightning strike damage behaviors of the conductive particles modified highly tough composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 28-36. |
[5] | LI Moying, ZHENG Linfeng, LIU Gang, LI Mengjiao, YAO Jianan. Adhesion study of carbon fiber/polyaryletherketone thermoplastic composites with epoxy coatings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 37-42. |
[6] | HUANG Daming, TANG Lixin, SUN Juntao, WANG Wei. Research on the effect of residual monomer acrylonitrile on the preparation of PAN-based carbon fiber [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 48-51. |
[7] | FENG Zhenhui, WANG Zhe, ZENG Jie, CHEN Binbin, FENG Chunle, ZHOU Fan. A method for optical fiber impact localization and load history reconstruction of composite laminates [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 52-56. |
[8] | ZHANG Dewei, WEI Wei, ZHANG Pin, WANG Qi, ZHAO Cong, AN Luling. Shape control of aircraft composite components based on measured data [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 57-66. |
[9] | YAN Chao, RONG Xiaoyuan, ZHAO Yueqing, QIAN Zhongjian. Curing deformation study of composite cobonding omega stringer stiffened panel [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 67-72. |
[10] | YAN Lei, ZHAO Fei, HUAN Dajun, ZHANG Shengyuan, WANG Bin, XIAO Jun. Research on tension-tensile fatigue behavior and life prediction of T700/PPS filament winding thermoplastic composites with NOL rings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 73-81. |
[11] | CHENG Libing, XU Weiwei, LI Bo, WEN Shiqi. Research on microwave curing process for rib composite parts [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 82-86. |
[12] | WU Haisheng, LUO Jintao, GU Yizhuo, SUN Tianfeng, LIU Jia, YAO Qi, LI Yu. Study on structural stability of high-modulus carbon fiber composite tube in alternating high and low temperature environment [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 87-91. |
[13] | FU Chengjian, LIN Song, GUO Shufen. Prediction and analysis of burst pressure of type Ⅳ composite cylinder based on progressive damage [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 92-97. |
[14] | XU Lin, LIU Chuanjun, ZHAO Chongshu. Application and development trends of composite materials in civil aircraft [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 98-104. |
[15] | SONG Jianhui, YU Xiaochen, ZHU Yingdan, WU Huaping, ZHANG Xiongjun, CHEN Gang. Advances in fatigue performance of fiber reinforced composite-metal hybrid joints [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||