[1] 毛起, 赵斌元, 沈大荣, 等. 水泥基碳纤维复合材料压敏性的研究. 复合材料学报, 1996(4): 10-13. [2] 栾利强, 江永盛, 文双寿, 等. 碳纳米管导电沥青混凝土的电学性能研究. 公路, 2023, 68(9): 348-354. [3] 刘洪波, 李兴, 佟瑶, 等. 石墨尾矿碳纤维混凝土电阻率与力学参数的相关性研究. 黑龙江大学工程学报, 2020, 11(2): 11-15. [4] 岳建华, 滕小振, 胡双贵, 等. 基于孔间直流电透视的煤层底板采动破坏电阻率时移变化规律与机理. 煤炭学报, 2024, 49(1): 601-615. [5] 胡千庭, 宋明洋, 李全贵, 等. 单轴压缩破坏下分层型煤电阻率响应分析. 煤炭学报, 2021, 46(1): 211-219. [6] 刘强, 邱黎明, 祖自银, 等. 含裂隙煤样受载破坏过程视电阻分布特征. 西安科技大学学报, 2021, 41(4): 731-738. [7] 李术才, 许新骥, 刘征宇, 等. 单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化. 岩石力学与工程学报, 2014, 33(1): 14-23. [8] 李苹, 孙树林, 李方. 基于电阻率的非饱和盐渍土抗剪强度预测研究. 河南科学, 2022, 40(9): 1404-1410. [9] 陈议城, 陈学军, 吴迪, 等. 不同含水率下红黏土无侧限抗压强度与电阻率关系. 桂林理工大学学报, 2020, 40(2): 358-364. [10] SIMON C, REBILLAT F, HERB V, et al. Monitoring damage evolution of SiCf/m composites using electrical resistivity: crack density-based electromechanical modeling. Acta Materialia, 2017, 124: 579-587. [11] MORSCHER G N, BAKER C, SMITH C. Electrical resistance of SiC fiber reinforced SiC/Si matrix composites at room temperature during tensile testing. International Journal of Applied Ceramic Technology, 2014, 11(2): 263-272. [12] SMITH C E, MORSCHER G N, XIA Z. Electrical resistance as a nondestructive evaluation technique for SiC/SiC ceramic matrix composites under creep-rupture loading. International Journal of Applied Ceramic Technology, 2011, 8(2): 298-307. [13] MANSOUR R, MAILLET E, MORSCHER G N. Monitoring interlaminar crack growth in ceramic matrix composites using electrical resistance. Scripta Materialia, 2015, 98: 9-12. [14] SINGH Y P, MANSOUR R, MORSCHER G N. Combined acoustic emission and multiple lead potential drop measurements in detailed examination of crack initiation and growth during interlaminar testing of ceramic matrix composites. Composites Part A: Applied Science and Manufacturing, 2017, 97: 93-99. [15] MANSOUR R, SINGH Y P, KANNAN M, et al. Study of interlaminar fracture properties of ceramic matrix composites at room and elevated temperatures//ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte, North Carolina, USA: American Society of Mechanical Engineers, 2017: GT2017-65168, V006T02A009. [16] SINGH Y P, PRESBY M J, KANNAN M, et al. Multi-lead direct current potential drop method for in situ health monitoring of ceramic matrix composites. Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 031301. [17] 杜双明, 乔生儒, 纪岗昌, 等. 3D-C/SiC复合材料拉—拉疲劳模量和电阻的变化. 宇航材料工艺, 2002(5): 38-41, 44. [18] GOULMY J P, CAMUS G, REBILLAT F. Monitoring damage evolution of ceramic matrix composites during tensile tests using electrical resistivity: crack density-based electromechanical model. Journal of the European Ceramic Society, 2021, 41(1): 121-129. [19] 杜双明, 乔生儒. 基于电阻变化的3D-C/SiC复合材料疲劳损伤演化. 复合材料学报, 2011, 28(2): 165-169. [20] GAO X, WEI T, DONG H, et al. Damage detection in 2.5-D C/SiC composites using electrical resistance tomography. Journal of the European Ceramic Society, 2019, 39(13): 3583-3593. [21] HOFMAN S. Mode Ⅰ delamination onset in carbon fiber reinforced SiC: double cantilever beam testing and cohesive zone modelling. Engineering Fracture Mechanics, 2017, 182: 506-520. [22] SHI W G, ZHANG C, WANG B, et al. Mode Ⅰ interlaminar fracture toughness of two-dimensional continuous fiber reinforced ceramic matrix composites using wedge-loaded double cantilever beam method. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107466. [23] KRAUSE T, TUSHTEV K, KOCH D, et al. Interlaminar mode Ⅰ crack growth energy release rate of carbon/carbon composites. Engineering Fracture Mechanics, 2013, 100: 38-51. [24] KUAMR R S. Crack-growth resistance behavior of mode-Ⅰ delamination in ceramic matrix composites. Acta Materialia, 2017, 131: 511-522. |