[1] 卢少微, 陈铎, 王晓强. 聚合物基复合材料制造过程在线监测技术研究进展[J]. 航空制造技术, 2017, 19: 72-77. [2] VOET E. In-situ deformation monitoring of aerospace qualified composites with embedded improved draw tower fibre Bragg gratings[D]. Ghent: Ghent University, 2011. [3] 孙亮亮. 碳纤维复合材料固化残余应力及变形研究[D]. 武汉: 武汉理工大学, 2016. [4] KHADKA S, HOFFMAN J, KUMOSA M. FBG monitoring of curing in single fiber polymer composites[J]. Composites Science and Technology, 2020, 198: 108308. [5] KHADKA S, KUMOSA M, HOFFMAN J. Determination of residual stresses in a single FBG fiber/epoxy composite system[J]. Composites Science and Technology, 2022, 218: 109138. [6] 谢忱. 基于光纤光栅传感的CFRP传动轴的固化过程监测[D]. 武汉: 武汉理工大学, 2016. [7] 王鹏, MUSTAFA D, JEROME M, 等. 通过光纤传感器和微型热电偶简单耦合方法测量内部平均应变和温度的变化来监测复合材料液体树脂灌注成型工艺[J]. 纤维复合材料, 2011, 28(1): 3-7. [8] 王鹏, 张影, 赵洪, 等. 双光栅监测环氧树脂固化过程及玻璃化温度实验[J]. 光电·激光, 2013, 24(4): 763-768. [9] 胡海晓. 碳纤维增强热固性复合材料固化变形机理实验研究[D]. 武汉: 武汉理工大学, 2016. [10] 王庆林. 碳纤维复合材料热固化过程的数值分析与光纤光栅监测[D]. 济南: 山东大学, 2018. [11] 常腾飞, 湛利华, 李树健, 等. 不同成型方法的树脂基复合材料帽形结构共固化成型质量研究[J]. 复合材料科学与工程, 2022(7): 32-38, 70. [12] 王琦. 三维机织复合材料固化变形多尺度分析及控制方法研究[D]. 大连: 大连理工大学, 2021. [13] ZANJANI J S M, AL-NADHARI A S, YILDIZ M. Manufacturing of electroactive morphing carbon fiber/glass fiber/epoxy composite: process and structural monitoring by FBG sensors[J]. Thin-Walled Structures, 2018, 130: 458-466. [14] 程伟, 郭晓东, 陈孝鹏, 等. 一种智能固体火箭发动机复合材料壳体的制作方法: CN108194229A[P]. 2018-06-22. [15] RAMAKRISHNAN M, RAJAN G, SEMENOVAY, et al. Hybrid fiber optic sensor system for measuring the strain, temperature, and thermal strain of composite materials[J]. IEEE Sensors Journal, 2014, 14(8): 2571-2578. [16] 康旭辉, 湛利华, 谭炜 ,等. 复合材料成型过程多参数协同在线监测系统研究[J]. 玻璃钢/复合材料, 2019(2): 57-62. [17] RUFAI O, CHANDARANA N, GAUTAM M, et al. Cure monitoring and structural health monitoring of composites using micro-braided distributed optical fibre[J]. Composite Structures, 2020, 254: 112861. [18] 秦发祥, 冯唐锋, 许鹏. 一种基于磁性纤维的微应变传感器及应变监测方法: CN114061435A[P]. 2022-02-18. [19] FENG T, XU P, WANG Y, et al. Magnetic fiber enabled curing electrogram: real-time process monitoring for thermosetting polymer materials[J]. Composites Science and Technology, 2022, 227: 109598. [20] 李梦颖. 面向湿法缠绕成型的T700/环氧复合材料微波固化机理及工艺研究[D]. 南京: 南京航空航天大学, 2021. [21] 王春文, 常新龙, 胡宽, 等. T700碳纤维复合材料预浸料微波固化试验[J]. 兵器装备工学报, 2021, 42(3): 208-212. [22] SMITH G D. Modelling and experimental issues in the processing of composite laminates[D]. Vancouver: The University of British Columbia, 1992. [23] 辛朝波. 典型复合材料元件热压成型过程分析与密实控制[D]. 北京: 北京航空航天大学, 2011. [24] WALCZYK D, KUPPERS J. Thermal press curing of advanced thermoset composite laminate parts[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(4): 635-646. [25] 刘小龙, 顾轶卓, 李敏, 等. 采用薄膜传感器的树脂基复合材料热压罐工艺密实压力测试方法[J]. 复合材料学报, 2013, 30(5): 67-73. [26] 张家兴. 叶栅结构格制件RTM工艺分析与实验研究[D]. 北京: 北京航空航天大学, 2022. [27] LU S, CHEN D, WANG X, et al. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor[J]. Composites Science and Technology, 2017, 152: 181-189. [28] LU S, ZHAO C, ZHANG L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor[J]. RSC Advances, 2018, 8(39): 22078-22085. [29] LUO S, WANG G, WANG Y, et al. Carbon nanomaterials enabled fiber sensors: a structure-oriented strategy for highly sensitive and versatile in situ monitoring of composite curing process[J]. Composites Part B: Engineering, 2019, 166: 645-652. [30] XING F, LI M, WANG S, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552. [31] PANDEY G, DEFFOR H, HEIDERET D, et al. Smart tooling with integrated time domain reflectometry sensing line for non-invasive flow and cure monitoring during composites manufacturing[J]. Compos-ites Part A: Applied Science and Manufacturing, 2013, 47: 102-108. [32] BUCHMANN C, FILSINGER J, LADASTAETTER E. Investigation of electrical time domain reflectometry for infusion and cure monitoring in combination with electrically conductive fibers and tooling materials[J]. Composites Part B: Engineering, 2016, 94: 389-98. [33] ZHOU Z J, LI M, GU Y Z, et al. Resin flow monitoring inside composite laminate during resin film infusion process[J]. Polymer Composites, 2013, 35: 681-690. [34] 罗维, 宋志梅, 程勇, 等. 介电分析在碳纤维增强双马来酰亚胺复合材料固化工艺中的应用研究[J]. 航空制造技术, 2020, 63(15): 48-52. [35] WU Z, CHEN Q, LIU D, et al. In situ monitoring of epoxy resin curing process: using glass transition as a bridge[J]. Polymer Testing, 2023, 117: 107871. [36] YAN S, ZEIZINGER H, MERTEN C, et al. In-situ investigation of dielectric properties and reaction kinetics of a glass-fiber-reinforced epoxy composite material using dielectric analysis[J]. Polymer Engineering and Science, 2021, 61: 1673-1684. [37] STEINHAUS J, HAUSNEROVA B,HAENEL T, et al. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA)[J]. Dental Materials, 2014, 30(3): 372-380. [38] BOLL D, SCHUBERT K, BRAUNER C, et al. Miniaturized flexible interdigital sensor for in situ dielectric cure monitoring of composite materials[J]. IEEE Sensors Journal, 2014, 14(7): 2193-2197. [39] CARLONE P, PALAZZO G S. Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors[J]. Applied Composite Materials, 2015, 22(5): 543-557. [40] LIONETTO F, TARZIA A, COLUCCIA M, et al. Air-coupled ultrasonic cure monitoring of unsaturated polyester resins[J]. Macromolecular Symposia, 2007, 247: 50-58. [41] LIONETTO F, MAFFEZZOLI A. Monitoring the cure state of thermosetting resins by ultrasound[J]. Materials, 2013, 6(9): 3783-3804. [42] GHODHBANI N, MARÉCHAL P, DUFLO H. Ultrasound monitoring of the cure kinetics of an epoxy resin: identification, frequency and temperature dependence[J]. Polymer Testing, 2016, 56: 156-166. [43] 黄贵飞. 环氧树脂中温固化的超声波监测研究[D]. 德阳: 中国民用航空飞行学院, 2018. [44] KOISSIN V, DEMCENKO A, KORNEEV V A. Isothermal epoxy-cure monitoring using nonlinear ultrasonics[J]. International Journal of Adhesion and Adhesives, 2014, 52: 11-18. [45] MARGUERES P, CAMPS T, VIARGUES M, et al. Preliminary experimental study on the electrical impedance analysis for in-situ monitoring of the curing of carbon/epoxy composite material for aeronautical and aerospace structures[J]. Measurement Science and Technology, 2013, 24(9): 095005. [46] MOUNKAILA M, CAMPS T, SASSI S, et al. Cure monitoring of composite carbon/epoxy through electrical impedance analysis[C]//Second European Conference of the Prognostics and Health Management Society 2014. Nantes, France: 2014. [47] SASSI S, MARGUERÈS P, OLIVIER P, et al. Determination of anisotropic geometrical parameters for the electrical characterization of carbon/epoxy composite during oven curing[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 204-216. [48] MOUNKAILA M, SASSI S, HAMADI A, et al. Modelling the electrical behaviour of carbon/epoxy composites and monitoring changes in their microstructure during oven and autoclave curing using electrical impedancemetry[J]. Smart Materials and Structures, 2018, 27(8): 085004. [49] MARGUERES P, OLIVIER P, MOUNKAILA M, et al. Carbon fibres reinforced composites. Electrical impedance analysis: a gateway to smartness[J]. International Journal of Smart and Nano Materials, 2020, 11(4): 417-430. [50] 沈艳. 基于能量转化平衡的CFRP构件固化度在线监测方法[D]. 南京: 南京航空航天大学, 2021. [51] 陈忠丽. 纤维复合材料结构固化变形过程的有限元模拟及在线监测[D]. 济南: 山东大学, 2020. [52] CARLONE P, ALEKSENDRIC′ D, C′IROVIC′ V, et al. Meta-modeling of the curing process of thermoset matrix composites by means of a FEM-ANN approach[J]. Composites Part B: Engineering, 2014, 67: 441-448. [53] 罗玲, 田智立, 张涛, 等. 基于人工神经网络的热固性树脂基复合材料固化变形预测研究综述[J]. 复合材料科学与工程, 2022(11): 120-127, 132. [54] 王雨澄, 陶飞, 左颖, 等. 数字孪生增强的复合材料质量预测[J]. Engineering, 2023, 22(3):23-33. [55] 武湛君, 张博明, 李辰砂, 等. 基于光纤在线监测的复合材料固化工艺优化[C]//中国力学学会.复合材料的现状与发展——第十一届全国复合材料学术会议论文集. 合肥: 中国科学技术大学出版社, 2000: 5. [56] 周冠男. 基于类石墨烯传感器复合材料结构动静态损伤检测[D]. 沈阳: 沈阳航空航天大学, 2023. [57] 张开宇, 闫光, 鹿利单,等. 预拉伸光纤光栅应变传感器传感性能研究[J]. 压电与声光, 2017, 39(5): 654-658. [58] 高琳琳. 树脂基复合材料封装的光纤光栅传感器的研制与应用[D]. 济南: 山东大学, 2019. [59] SCHUBEL P J, CROSSLEY R J, BOATENG E K G, et al. Review of structural health and cure monitoring techniques for large wind turbine blades[J]. Renewable Energy, 2013, 51: 113-123. [60] 郝旭峰, 李涛, 居建国. 内置光纤对复合材料性能的影响[J]. 航空制造技术, 2011(20): 102-104. [61] 冯海心. 内埋光纤复合材料层合板力学性能研究[D]. 南京: 南京航空航天大学, 2015. [62] 刘巍, 陈启航, 梁冰, 等. 基于多源参量感知的航空工装定位器在线监测方法与系统研究[J]. 机械工程学报, 2023, 59(12): 162-172. [63] 罗瑞. 压力容器多通道应变检测系统[D]. 沈阳: 沈阳航空航天大学, 2023. |