复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (4): 96-102.DOI: 10.19936/j.cnki.2096-8000.20250428.012

• 设计与工艺 • 上一篇    下一篇

弯曲载荷下复合材料胶-螺混合连接结构破坏模式研究

张高涛1,2, 方志刚3, 倪爱清1, 边天涯4, 李想4, 李亮3, 王继辉2*   

  1. 1.武汉理工大学 材料复合新技术国家重点实验室,武汉 430070;
    2.武汉理工大学 材料科学与工程学院,武汉 430070;
    3.中国人民解放军92228部队,北京 100072;
    4.洛阳船舶材料研究所,洛阳 471039
  • 收稿日期:2024-02-27 出版日期:2025-04-28 发布日期:2025-06-03
  • 通讯作者: 王继辉(1962—),男,博士,教授,博士生导师,研究方向为聚合物基复合材料,jhwang@whut.edu.cn。
  • 作者简介:张高涛(1996—),男,硕士,研究方向为复合材料结构强度。

Research on the failure mode of composite bonded-bolted hybrid connection structures under bending loads

ZHANG Gaotao1,2, FANG Zhigang3, NI Aiqing1, BIAN Tianya4, LI Xiang4, Li Liang3, WANG Jihui2*   

  1. 1. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
    3. Unit 92228, People’s Liberation Army, Beijing 100072, China;
    4. Luoyang Ship Material Research Institute, Luoyang 471039, China
  • Received:2024-02-27 Online:2025-04-28 Published:2025-06-03

摘要: 本文采用数值模拟研究了碳玻混杂复合材料的胶-螺混合搭接结构在弯曲载荷下的失效模式,并进行了弯曲试验验证;然后,本文考察了上搭接板所占厚度比例对混合连接结构的强度和刚度的影响,并根据结果提出了连接结构的优化设计。结果表明:数值模拟得到的载荷-位移曲线的关键失效时刻与试验结果吻合较好,初始损伤表现为胶层失效,产生于连接区右侧端部,并出现第一峰值载荷;随着位移载荷的增加,裂纹继续扩展,胶层完全破坏后,螺栓将继续单独承受载荷,直到复合材料发生挤压破坏,最终导致整体结构失效。优化设计的结果表明,提高上搭接板厚度可有效提升极限承载力,其中上搭接板厚度为总厚度的65%的连接结构极限承载能力相比原设计(上板厚度占总厚度的50%)极限承载能力提升了98.6%,最终失效模式由上搭接板右侧螺孔挤压失效转变为上下搭接板两侧螺孔均发生挤压失效,上搭接板与下搭接板失效程度基本一致,结构性能得到了充分发挥。

关键词: 复合材料, 胶-螺混合连接, 失效模式, 数值模拟, 优化设计

Abstract: In this paper, the failure modes of the bonded-bolted lap joint of carbon-glass hybrid composite under bending loads were investigated through numerical simulations and experimental validation. The influence of the thickness ratio of the upper lap plate on the strength and stiffness of the hybrid joint was then examined, and the optimization design is presented based on the numerical and experimental results. The results show that the numerical and experimental load-displacement curves are in good agreement, with the initial damage occurring due to adhesive layer failure at the right end of the joint area, at which point the first peak load is achieved. With the increase of displacement, cracks continue to propagate until complete failure of the adhesive layer occurs, after which the bolt continues to bear load independently until the composite material undergoes compression failure, leading to the overall structural failure eventually. The optimization results indicate that increasing the thickness ratio of the upper lap plate can effectively enhance the ultimate load capacity of the joint. Specifically, the ultimate load capacity of the joint structure with a upper thickness of 65% of the total FRP skin is increased by 98.6% compared to the original design (with the upper thickness of 50% of the total). The final failure mode shifts from the compression at the right-side of the bolt hole in the upper lap plate to both the upper and lower plates with similar degrees of failure, and the optimal structural efficiency achieved.

Key words: composite material, bonded-bolted hybrid joint, failure mode, numerical simulation, optimization

中图分类号: