复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (4): 125-134.DOI: 10.19936/j.cnki.2096-8000.20250428.016

• 工程应用 • 上一篇    下一篇

CFRP基材矿用安全头盔轻量化设计与优化

石林鑫1, 王海军1,2, 王洪磊1,2*   

  1. 1.煤炭科学研究总院,北京 100013;
    2.中国煤炭科工集团 煤炭科学研究总院有限公司,北京 100013
  • 收稿日期:2024-02-27 出版日期:2025-04-28 发布日期:2025-06-03
  • 通讯作者: 王洪磊(1983—),男,博士,研究员,硕士生导师,研究方向为散料连续输送装备研发、散体力学分析及视觉感知测量,yizhuangw49654@163.com。
  • 作者简介:石林鑫(1996—),男,硕士研究生,研究方向为结构设计、仿真分析与优化。
  • 基金资助:
    煤炭科学研究总院创新创业科技专项(2021-JSYF-003)

Lightweight design and optimization of CFRP material mining helmet

SHI Linxin1, WANG Haijun1,2, WANG Honglei1,2*   

  1. 1. Chinese Institute of Coal Science, Beijing 100013, China;
    2. Chinese Institute of Coal Science Co., Ltd., China Coal Technology and Engineering Group, Beijing 100013, China
  • Received:2024-02-27 Online:2025-04-28 Published:2025-06-03

摘要: 为解决目前矿用安全头盔重量过大的问题,采用碳纤维增强复合材料(CFRP)替代传统ABS注塑材料实现矿用安全头盔的轻量化设计。建立了钢球-头盔碰撞仿真有限元模型,在碰撞仿真环境下对比分析ABS和CFRP盔壳的力学性能。与ABS盔壳相比,CFRP盔壳的强度和刚度更优,且具有更好的防护性能。利用BP神经网络模拟CFRP铺层参数与头盔力学性能之间的输入输出映射关系,并使用粒子群优化算法实现了对CFRP头盔力学性能的全局优化。优化结果表明,最优铺层参数为单层层厚0.2 mm,各层铺层角度为,优化后的CFRP头盔在碰撞仿真中的顶部最大变形量为19.601 mm,头模最大受力为4.891 kN。该优化方案能够满足相关国家标准的要求,同时实现相比ABS头盔盔壳减重49.3%的轻量化设计。

关键词: 碳纤维增强复合材料, 有限元分析, BP神经网络, 粒子群优化, 轻量化设计

Abstract: In order to solve the problem of excessive weight of the mining helmet, carbon fiber reinforced composite (CFRP) material was devised to substitute for the conventional ABS plastic to realize the lightweight design of the mining helmet. The finite element model of steel ball-helmet for collision simulation was established. The mechanical properties of ABS and CFRP helmet shell were compared and analyzed in simulation. The strength and stiffness of CFRP helmet shell are superior to ABS casings, and have better protective properties. The input-output relationship between CFRP lamination parameters and helmet mechanical properties was simulated by BP neural network. And the global optimization of helmet mechanical properties was realized by particle swarm optimization algorithm. The optimization results indicate that the optimal lamination parameters consist ofa total number of 6 layers of CFRP, with each layer having a thickness of 0.2 mm and arranged in the following angle sequence . The collision simulation results show that the optimized CFRP helmet’s top experiences a maximum deformation of 19.601 mm, while the headform endures a maximum force of 4.891 kN. The optimization configuration can meet the requirements of relevant national standards and achieve a lightweight design with 49.3% weight reduction compared with the ABS helmet shell.

Key words: carbon fiber reinforced plastics, finite element analysis, BP neural network, particle swarm optimization, lightweight design

中图分类号: