[1] 钱鑫, 王雪飞, 马洪波, 等. 国内外PAN基高模量碳纤维的技术现状与研究进展[J]. 合成纤维工业, 2021, 44(5): 58-64. [2] 蒋诗才, 李伟东, 李韶亮, 等. PAN基高模量碳纤维及其应用现状[J]. 高科技纤维与应用, 2020, 45(2): 1-10. [3] 周秀燕, 王梓桥, 匡乃航, 等. 国产高模碳纤维增强复合材料性能研究[J]. 纤维复合材料, 2022, 39(2): 53-56. [4] REN F, ZHU G M, REN P G, et al. In situ polymerization of graphene oxide and cyanate ester-epoxy with enhanced mechanical and thermal properties[J]. Applied Surface Science, 2014, 316: 549-557. [5] GUAN Q, YUAN L, ZHANG Y, et al. Improving the mechanical, thermal, dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle[J]. Composites Part B: Engineering, 2017, 123(8): 81-91. [6] 秦滢杰, 韩建平, 陈书华. 一种氰酸酯-环氧树脂作为卫星结构件复合材料基体的评价[J]. 复合材料学报, 2018, 35(3): 528-536. [7] 成来飞, 殷小玮, 张立同. 复合材料原理[M]. 西安: 西北工业大学出版社, 2016. [8] WU Q, ZHAO R, MA Q, et al. Effects of degree of chemical interaction between carbon fibers and surface sizing on interfacial properties of epoxy composites[J]. Composites Science and Technology, 2018, 163: 34-40. [9] 赵臻璐, 陈维强, 张玉生, 等. BHM3 碳纤维及其氰酸酯基复合材料耐原子氧侵蚀性能[J]. 宇航学报, 2016, 37(5): 625-630. [10] 韩建平, 秦滢杰, 高伟, 等. 卫星构件用 M40J/BA204复合材料性能[J]. 宇航材料工艺, 2014(5): 46-49. [11] XU P, YU Y, LIU D, et al. Enhanced interfacial and mechanical properties of high-modulus carbon fiber composites: establishing modulus intermediate layer between fiber and matrix based on tailores-modulus epoxy[J]. Composites Science and Technology, 2018, 163: 26-33. [12] ZHENG H, ZHANG W J, LI B W, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B: Engineering, 2022, 233: 109639. [13] LIN J, XU P, WANG L, et al. Multi-scale interphase construction of self-assembly naphthalenediimide/multi-wall carbon nanotube and enhanced interfacial properties of high-modulus carbon fiber composites[J]. Composites Science and Technology, 2019, 184(10): 107855. [14] 孙宇航, 张月义, 杨小平, 等. 高强/高模碳纤维复合材料界面影响机制及界面相构筑研究进展[J]. 航空制造技术, 2020, 63(15): 22-31. [15] 卢康逸 , 张月义, 杨小平, 等. 碳纤维复合材料层间增强增韧技术研究进展[J]. 航空制造技术, 2020, 63(18): 14-23. [16] DAI Z, SHI F, ZHANG B, et al. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257: 6980-6985. [17] FILIPECKI J, GOLIS E, REBENA M, et al. Positron life time spectroscopy as a method to study of the defect degree materials with disordered structure[J]. Optoelectronics and Advanced Materials, 2013, 7(11-12): 1029-1031. [18] ZHANG Q, LIANG S, SUI G, et al. Influence of matrix modulus on the mechanical and interfacial properties of carbon fiber filament wound composites[J]. RSC Advanced, 2015, 5(32): 25208-25214. [19] LIU H, LI M, LU Z Y, et al. Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system[J]. Macromolecules, 2011, 44(21): 8650-8660. [20] LIU L, YAN F, LI M, et al. Improving interfacial properties of hierarchical reinforcement carbon fibers modified by graphene oxide with different bonding types[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 616-625. [21] CHEN J L, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154: 175-186. [22] 刘大伟. 微/纳米粒子协同增强增韧碳纤维复合材料的实现机制研究[D]. 北京: 北京化工大学, 2016. [23] 黄智华. M55J/氰酸酯层压板吸湿膨胀变形规律及微观机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [24] 李树茂. 耐湿热复合材料加筋壳体整体成型及其结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [25] LIANG G, ZHANG M. Enhancement of processability of cyanate ester resin via copolymerization with epoxy resin[J]. Journal of Applied Polymer Science, 2002, 85(11): 2377-2381. |