[1] KUMAR C V, KANDASUBRAMANIAN B. Advances in ablative composites of carbon based materials: a review[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22663-22701. [2] NAEBE M, ABOLHASANI M M, KHAYYAM H, et al. Crack damage in polymers and composites: a review[J]. Polymer Reviews, 2016, 56(1): 31-69. [3] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797. [4] KLOXIN C J, SCOTT T F, ADZIMA B J, et al. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers[J]. Macromolecules, 2010, 43(6): 2643-2653. [5] PODGÓRSKI M, FAIRBANKS B D, KIRKPATRICK B E, et al. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs)[J]. Advanced Materials, 2020, 32(20): 1906876. [6] CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 1698-1702. [7] LIU Y, CHUO T. Self-healing polymers based on thermally reversible Diels-Alder chemistry[J]. Polymer Chemistry, 2013, 4(7): 2194. [8] STICKER D, GECZY R, HAFELI U O, et al. Thiol-ene based polymers as versatile materials for microfluidic devices for life sciences applications[J]. ACS Applied Materials Interfaces, 2020,12(9): 10080-10095. [9] SEGURA J L, MANCHENO M J, ZAMORA F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications[J]. Chemical Society Reviews, 2016, 45(20): 5635-5671. [10] WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers[J]. Nature Materials, 2011, 10(1): 14-27. [11] LIU T, ZHAO B M, ZHANG J W. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification[J]. Polymer, 2020, 194: 122392. [12] MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. [13] SAMANTA S, KIM S, SAITO T, et al. Polymers with dynamic bonds: adaptive functional materials for a sustainable future[J]. The Journal of Physical Chemistry B, 2021, 125(33): 9389-9401. [14] ZHANG L, ZHANG Y, WANG L, et al. Phenolic resin modified by boron-silicon with high char yield[J]. Polymer Testing, 2019, 73: 208-213. [15] XING X L, ZHANG P, ZHAO Y H, et al. Pyrolysis mechanism of phenylboronic acid modified phenolic resin[J]. Polymer Degradation and Stability, 2021, 191: 109672. [16] GAO J G, LIU Y F, YANG L T. Thermal stability of boron-containing phenol formaldehyde resin[J]. Polymer Degradation and Stability, 1999, 63(1): 19-22. [17] WANG C, SHEN Z F, HU P F, et al. Facile fabrication and characterization of high-performance Borax-PVA hydrogel[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 103-113. [18] BAPAT A P, SUMERLIN B S, SUTTI A. Bulk network polymers with dynamic B—O bonds: healable and reprocessable materials[J]. Materials Horizons, 2020, 7(3): 694-714. [19] ZHANG X T, ZHAO Y H, WANG S J, et al. Cross-linked polymers based on B—O bonds: Synthesis, structure and properties[J]. Materials Chemistry Frontiers, 2021, 5(15): 5534-5548. [20] CASH J J, KUBO T, BAPAT A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7): 2098-2106. [21] RÖTTGER M, DOMENECH T, van der WEEGEN R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333): 62-65. [22] GUO H, YUE L, RUI G, et al. Recycling poly(ethylene-vinyl acetate) with improved properties through dynamic cross-linking[J]. Macromolecules, 2020, 53(1): 458-464. [23] YUN J, CHEN L X, ZHANG X F, et al. The effect of introducing B and N on pyrolysis process of high ortho novolac resin[J]. Polymers, 2016, 8(3): 35. [24] WANG S J, XING X L, ZHANG X T, et al. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds[J]. Journal of Materials Chemistry A, 2018, 6(23): 10868-10878. [25] SHA J J, DAI J X, LI J, et al. Measurement and analysis of fiber-matrix interface strength of carbon fiber-reinforced phenolic resin matrix composites[J]. Journal of Composite Materials, 2014, 48(11): 1303-1311. [26] ZHANG L, TIAN X, MALAKOOTI M H, et al. Novel self-healing CFRP composites with high glass transition temperatures[J]. Composites Science and Technology, 2018, 168: 96-103. |