[1] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys-A review[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 1-29. [2] 陈诗展, 胡俊山, 张霖, 等. 航空金属构件损伤复合材料单面贴补修复力学性能[J]. 复合材料学报, 2023, 40(10): 5918-5931. [3] 刘志明, 许昶. 碳纤维增强环氧树脂复合材料与铝板胶螺混合连接接头失效仿真[J]. 复合材料学报, 2019, 36(10): 2308-2315. [4] ZHANG H Y, ZHANG L, XU C, et al. Global sensitivity analysis of mechanical properties in hybrid single lap aluminum-CFRP (plain woven) joints based on uncertainty quantification[J]. Composite Structures, 2022, 280: 114841. [5] HE Z K, ZHENG G, LUO Q T, et al. Fatigue life improvement mechanisms of CFRP/Al hybrid joints - Load sharing study using a digital image correlation technique[J]. Composite Structures, 2024, 327:117625. [6] ZHENG G, HE Z K, WANG K, et al. On failure mechanisms in CFRP/Al adhesive joints after hygrothermal aging degradation following by mechanical tests[J]. Thin-Walled Structures, 2021, 158: 107184. [7] SUN L G, TIE Y, HOU Y L, et al. Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model[J]. Engineering Fracture Mechanics, 2020, 228: 106897. [8] TAKAMURA M, ISOZAKI M, TAKEDA S, et al. Evaluation of true bonding strength for adhesive bonded carbon fiber-reinforced plastics[J]. Materials, 2024, 17(2): 394. [9] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1): 121-131. [10] SUN L G, LI C, TIE Y, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives, 2019, 95: 102402. [11] SHANG X, MARQUES E A S, CARBAS R J C, et al. Fracture mechanism of adhesive single-lap joints with composite adherends under quasi-static tension[J]. Composite Structures, 2020, 251: 112639. [12] 邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10): 2760-2767. [13] BIDADI J, GOOGARCHIN H S, AKHAVAN-SAFAR A, et al. Characterization of bending strength in similar and dissimilar carbon-fiber-reinforced polymer/aluminum single-lap adhesive joints[J]. Applied Sciences-Basel, 2023, 13(23): 12879. [14] KARIMI S, NASAB M R, AFSHARI R, et al. Effect of hygrothermal and thermal aging on the fatigue and static strength of mechanical and hybrid single lap joint[J]. Composite Structures, 2023, 309: 116692. [15] ZHAO L C, KARIMI S, XU L. An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions[J]. Journal of Adhesion, 2024, 100(9): 845-866. [16] ÇAKIR M V. The synergistic effect of hybrid nano-silica and GNP additives on the flexural strength and toughening mechanisms of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2023, 122: 103333. [17] ÇAKIR M V, ÖZBEK Ö. Mechanical performance and damage analysis of GNP-reinforced adhesively bonded joints under shear and bending loads[J]. Journal of Adhesion, 2023, 99(5): 869-892. [18] HÜLAGÜ B, ÜNAL H Y, ACAR V, et al. Low-velocity impact and bending response of graphene nanoparticle-reinforced adhesively bonded double strap joints[J]. Journal of Adhesion Science and Technology, 2021, 35(22): 2391-2409. [19] HOU Y L, TIE Y, LI C, et al. Low-velocity impact behaviors of repaired CFRP laminates: effect of impact location and external patch configurations[J]. Composites Part B: Engineering, 2019, 163: 669-680. [20] DONADON M V, IANNUCCI L, FALZON B G, et al. A progressive failure model for composite laminates subjected to low velocity impact damage[J]. Composite Structures, 2008, 86(11-12): 1232-1252. [21] HUANG L H, SUN J, ZHANG D T, et al. Numerical investigation on composite laminates under double-position low-velocity impacts[J]. Journal of Reinforced Plastics and Composites, 2023, 42(21-22): 1176-1190. [22] BAŽANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Materials and Structures, 1983, 16(3): 155-177. [23] CHEN H L, NA J X, WANG D F, et al. Numerical simulation and failure experiment of hygrothermal aged CFRP single and double lap joints[J]. Thin-Walled Structures, 2023, 188: 110786. [24] HU C X, XU Z H, QIU J Z, et al. A unified modeling strategy of the stability and progressive damage behavior of CFRP double-blade composite stiffened structures (DCSS) under uniaxial compression[J]. Thin-Walled Structures, 2023, 189: 110896. [25] SUN G Y, WEI Y, HUO X T, et al. On quasi-static large deflection of single lap joints under transverse loading[J]. Thin-Walled Structures, 2022, 170: 108572. [26] BELLINI C, DI COCCO V, IACOVIELLO F, et al. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics[J]. Composite Structures, 2019, 225: 111117. [27] KESHTEGAR B, GHOLAMPOUR A, THAI D K, et al. Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete[J]. Composite Structures, 2021, 262:113644. [28] 张聪, 疏炳南, 张江涛, 等. 基于响应面法-遗传算法的船舶推进轴系多目标优化设计[J]. 上海交通大学学报, 2025, 59(4): 466-475. [29] 韩宇泽, 刘雁鹏, 任中杰, 等. 基于NSGA-Ⅱ算法的缠绕过程多目标工艺参数优化[J]. 复合材料学报, 2024, 41(10): 5622-5633. [30] DUGARDIN F, YALAOUI F, AMODEO L. New multi-objective method to solve reentrant hybrid flow shop scheduling problem[J]. European Journal of Operational Research, 2010, 203(1): 22-31. |