复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (9): 98-109.DOI: 10.19936/j.cnki.2096-8000.20250928.013

• 工程应用 • 上一篇    下一篇

基于Bayesian-Bagging-XGBoost算法的GFRP增强混凝土柱轴向承载力预测

唐培根, 李小亮*, 何鑫, 马国辉, 张祥   

  1. 中国长江电力股份有限公司 白鹤滩水力发电厂,宁南615400
  • 收稿日期:2024-08-05 发布日期:2025-10-23
  • 通讯作者: 李小亮(1984—),男,硕士,高级工程师,研究方向为水工建筑物检修与维护,li_xiaoliang@ctg.com.cn。
  • 作者简介:唐培根(1995—),男,硕士,助理工程师,研究方向为水工建筑物施工及维护。

Prediction of axial bearing capacity of GFRP-reinforced concrete columns based on Bayesian-Bagging-XGBoost algorithm

TANG Peigen, LI Xiaoliang*, HE Xin, MA Guohui, ZHANG Xiang   

  1. Baihetan Hydropower Plant, China Yangtze Power Co., Ltd., Ningnan 615400, China
  • Received:2024-08-05 Published:2025-10-23

摘要: 由于钢筋与玻璃纤维增强聚合物(Glass Fiber Reinforced Polymer,GFRP)筋力学特性的差异,GFRP筋增强混凝土柱轴压承载力计算不能简单套用钢筋混凝土柱计算方法。为提高GFRP筋增强混凝土柱轴压承载力预测模型的准确性,以253组试验数据作为极限梯度提升(XGBoost)算法建模的数据基础,并采用Bayesian优化算法、Bagging算法对XGBoost算法进行了优化,以提高模型的预测精度、稳定性和训练效率。采用决定系数(R2)、平均绝对误差(MAE)和相对根均方误差(RRSE)等指标对模型进行评价,并将其与现有预测模型进行对比分析。研究发现,Bayesian优化算法和Bagging算法可有效提高模型的训练效率、预测精度。所提出的Bayesian-Bagging-XGBoost模型的R2,MAE,RRSE值分别为0.691 6,418.162 9,0.555 3,远优于现有预测模型指标,可为GFRP筋增强混凝土柱的工程应用提供更加准确的参考。

关键词: Bayesian优化, XGBoost算法, GFRP增强混凝土柱, 轴向承载力, 预测

Abstract: Due to the differences in mechanical properties between steel bars and glass fiber reinforced polymer (GFRP) bars, the axial bearing capacity of GFRP bar-reinforced concrete columns cannot be simply calculated using the methods for reinforced concrete columns. To improve the accuracy of the predictive model for the axial bearing capacity of GFRP bar-reinforced concrete columns, this study used 253 sets of experimental data as the basis for modeling with the extreme gradient boosting (XGBoost) algorithm. Bayesian optimization and Bagging algorithms were employed to optimize the XGBoost algorithm to enhance the model’s predictive accuracy, stability, and training efficiency. The model was evaluated using the coefficient of determination (R2), mean absolute error (MAE), and relative root mean square error (RRSE) and compared with existing predictive models. The study found that Bayesian optimization and Bagging algorithms effectively improved the training efficiency and predictive accuracy of the model. The proposed Bayesian-Bagging-XGBoost model achieved R2, MAE, and RRSE values of 0.691 6, 418.162 9, and 0.555 3, respectively, which are significantly better than those of existing predictive models. This model provides a more accurate reference for the engineering application of GFRP bar-reinforced concrete columns.

Key words: Bayesian optimization, XGBoost algorithm, GFRP-reinforced concrete columns, axial bearing capacity, prediction

中图分类号: