COMPOSITES SCIENCE AND ENGINEERING ›› 2024, Vol. 0 ›› Issue (3): 121-128.DOI: 10.19936/j.cnki.2096-8000.20240328.018
• REVIEW • Previous Articles
ZHAO Zehua, ZHANG Zhaoheng, XING Yajuan, WANG Boyao, LIN Jialun, YANG Yi, GAO Kun*
Received:
2023-02-13
Online:
2024-03-28
Published:
2024-04-22
CLC Number:
ZHAO Zehua, ZHANG Zhaoheng, XING Yajuan, WANG Boyao, LIN Jialun, YANG Yi, GAO Kun. Research progress of new sandwich structures[J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(3): 121-128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://frp.cn/EN/10.19936/j.cnki.2096-8000.20240328.018
[1] REN P, TAO Q Q, YIN L L, et al. High-velocity impact response of metallic sandwich structures with PVC foam core[J]. International Journal of Impact Engineering, 2020, 144: 103657. [2] SCHAFER K, GOHLER C, TROLTZSCH J, et al. Textile-based surface design of thermoplastic composites for microstructural adhesion to polyurethane foams for lightweight structures[J]. Composite Interfaces, 2019, 26(4): 339-356. [3] GRUNEWALD J, PARLEVLIET P P, MATCHINSKI A, et al. Mechanical performance of CF/PEEK-PEI foam core sandwich structures[J]. Journal of Sandwich Structures & Materials, 2019, 21(8): 2680-2699. [4] LEE J C, PARK D H, JUNG H S, et al. Design for carbon fiber lamination of PMI foam cored CFRP sandwich composite applied to automotive rear spoiler[J]. Fibers Polymer, 2020, 21(1): 156-161. [5] BUCKMANN T, STENGER N, KADIC M. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714. [6] 骆伟, 谢伟, 刘敬喜. 复合材料波纹夹层结构低速冲击后的剩余弯曲承载能力[J]. 船海工程, 2018, 47(1): 51-54. [7] XIONG J, DU Y T, MOUSANEZHAD D, et al. Sandwich structures with prismatic and foam cores: A review[J]. Sandwich Structures, 2019, 21(1): 1800036. [8] WANG T, QIN Q H, WANG M S. Blast response of geometrically asymmetric metal honeycomb sandwich plate: Experimental and theoretical investigations[J]. International Journal of Impact Engineering, 2017, 105: 24-38. [9] 戴耀, 孙琦, 刘凯. 不同夹层结构复合装甲的抗弹性能研究[J]. 装甲兵工程学院学报, 2007(6): 33-36. [10] SCHAEDLER T A, CHAN L J, CLOUGH E C, et al. Nanocrystalline aluminum truss cores for lightweight sandwich structures[J]. Journal of Material, 2017, 69(8): 2626-2634. [11] 李锐. 轻质高强类蜂窝夹层结构优化设计[D]. 湖北: 三峡大学, 2021. [12] SHOKOOFEH D, MAHMOOD S. High velocity impact response of corrugated core composite sandwich structures[J]. Journal of Composite Materials, 2022, 56(16): 2559-2571. [13] 丁若晨. 基于激光选区熔化的金属点阵结构力学性能研究[D]. 北京: 中国科学院大学, 2022. [14] CHEON S, YU S, KIM K Y, et al. Improvement of interfacial bonding force between PMI foam and CFRP in PMI foam-cored CFRP sandwich composites[J]. Fibers Polymer, 2021, 22(8): 2281-2284. [15] SIIVOLA J T, MINAKUCHI S, TAKEDA N. Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures[J]. Journal of Sandwich Structures & Materials, 2015, 17(4): 335-358. [16] BEHNISCH F, BRUTSCH J, WERNER H O, et al. The direct sandwich composite molding (D-SCM) process: Sandwich manufacturing and characterization[J]. Journal of Composites Science, 2022, 6(3): 271-284. [17] KOMOREK A, PRZYBYLEK P, SZCZEPANIAK R. The influence of low-energy impact loads on the properties of the sandwich composite with a foam core[J]. Polymers, 2022, 14(8): 1566-1584. [18] JIA J L, YAN S. Fabrication and low-velocity impact response of pyramidal lattice stitched foam sandwich composites[J]. Science and Engineering of Composite Materials, 2020, 27(1): 245-257. [19] HUSEYIN E Y, BULENT M I, TUBA A. Tensile and compressive performances of foam core sandwich composites with various core modifications[J]. Journal of Sandwich Structures & Materials, 2017, 19(1): 49-65. [20] DU L, JIAO G Q, TAO H. Z-pin reinforcement on the core shear properties of polymer foam sandwich composites[J]. Journal of Composite Materials, 2009, 43(3): 289-300. [21] DU L, JIAO G Q. Indentation study of Z-pin reinforced polymer foam core sandwich structures[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 822-829. [22] PRALL D, LAKES R S. Properties of a chiral honeycomb with a poisson's ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305-314. [23] LIRA C, INNOCENTI P, SCARPA F. Transverse elastic shear of auxetic multi re-entrant honeycombs[J]. Composite Structures, 2009, 90(3): 314-322. [24] INGROLE A, HAO A, LIANG R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J]. Materials & Design, 2017, 117(5): 72-83. [25] PATEL S, PATEL M. The efficient design of hybrid and metallic sandwich structures under air blast loading[J]. Journal of Sandwich Structures & Materials, 2022, 24(3): 1706-1725. [26] ZHANG S, FAN T. Impact behaviour of hexagonal hierarchical honeycombs[J]. Journal of Sandwich Structures & Materials, 2022, 24 (3): 1597-1610. [27] WANG Y, QIAN D, CHEN Y, et al. Effect of plate lattice-filling on the compressive mechanical property of 3D-printed square honeycombs[J]. Journal of Sandwich Structures & Materials, 2022, 24(3): 1580-1596. [28] 高淑悦. 基于3D打印氧化锆陶瓷的夹层结构力学性能研究[D]. 上海: 上海应用技术大学, 2022. [29] BOLLEN P, QUI N, HUYNEN I, et al. Multifunctional architectured materials for electromagnetic absorption[J]. Scripta Materialia, 2013, 68(1): 50-54. [30] MING W, YU W, QIU K, et al. Modelling of the temperature distribution based on equivalent heat transfer theory and anisotropic characteristics of honeycomb core during milling of aluminum honeycomb core[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(8): 2097-2110. [31] KANG D, ZOU P, WU H, et al. Study on ultrasonic vibration-assisted cutting of Nomex honeycomb cores[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 979-992. [32] VALDEVIT L, HUTCHINSON J W, EVANS A G. Structurally optimized sandwich panels with prismatic cores[J]. International Journal of Solids and Structures, 2004, 41(18-19): 5105-5124. [33] 周昊, 郭锐, 南博华, 等. 填充式波纹夹层结构超高速撞击特性仿真[J]. 国防科技大学学报, 2017, 39 (2): 57-63. [34] 孙浩, 赵晓昱. 复合材料波纹夹层结构弯曲性能研究[J]. 上海工程技术大学学报, 2020, 34(1): 76-80. [35] XIA F K, PANG T, SUN G Y, et al. Longitudinal bending of corrugated sandwich panels with cores of various shapes[J]. Thin-Walled Structures, 2022, 173: 109001. [36] FENG Y X, QIU H, GAO Y C. Creative design for sandwich structures: A review[J]. International Journal of Advanced Robotics Systems, 2020, 17(3): 1-24. [37] LI W X, SUN F F, WEI W Y. Fabrication and testing of composite corrugated-core sandwich cylinder[J]. Composites Science and Technology, 2018, 156(3): 127-135. [38] DU Z, ZHANG K. The hot bending and diffusion bonding of TiAl-based alloy for corrugated-core sandwich structure[J]. Journal of Materials Engineering and Performance, 2019, 28(3): 1986-1994. [39] WANG T, GUO L. A realistic model for transverse shear stiffness prediction of composite corrugated-core sandwich structure with bonding effect[J]. Journal of Sandwich Structures & Materials, 2022, 24(1): 763-788. [40] 李响, 李锐, 徐兴兴. 等. 新型变截面波纹夹层结构抗爆炸冲击性能[J]. 机械, 2020, 47(10): 6-15. [41] VAKILIFARD A, MAZAHERI H, SHABAN M. Bending behavior and geometrical optimization of five-layered corrugated sandwich panels with equal in-plane principal stiffness[J]. Journal of Composite Materials, 2022, 56(17): 2739-2753. [42] MAHER R, KHALILI S, ESLAMI F R. Experimental analysis of corrugated core sandwich panel with smart composite face-sheets under high-velocity impact[J]. Journal of Composite Materials, 2022, 56(10): 1495-1511. [43] ZENG Y, LIU J X, ZHAO Y J. Experimental research on the repeated impacts behavior of aluminum corrugated-core sandwich structures[J]. Shock and Vibration, 2022, 14: 4644029. [44] DALIRI V, ZEINEDINI A. Flexural behavoiur of the composite sandwich panels with novel and regular corrugated cores[J]. Apply Composite Material, 2019, 26(6): 963-982. [45] LI H, GE L, LIU B, et al. An equivalent model for sandwich panel with double-directional trapezoidal corrugated core[J]. Journal of Sandwich Structures & Materials, 2020, 22(7): 2445-2465. [46] YANG X F, MA J X, SHI Y L. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design, 2017, 135: 275-290. [47] XUE Z Y, HUTCHINSON J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4): 687-705. [48] CUI X D, ZHAO L M, WANG Z H. Dynamic response of metallic lattice sandwich structures to impulsive loading[J]. International Journal of Impact Engineering, 2012, 43: 1-5. [49] 王晓鸿. C/SiC点阵夹层结构复合材料传热性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. [50] LIU J, CHEN T T, ZHANG Y H. On sound insulation of pyramidal lattice sandwich structure[J]. Composite Structures, 2019, 208:385-394. [51] WANG Z, FU T, LI B. Acoustic response analysis of periodic orthogonal stiffened composite sandwich structure with pyramidal truss cores[J]. Journal of Sandwich Structures & Materials, 2022, 24(3): 1629-1652. [52] WANG Y Z, MA L. Sound insulation performance of pyramidal truss core sandwich structure with frame[J]. Journal of Sandwich Structures & Materials, 2022, 24(2): 1245-1269. |
[1] | ZHANG Qian, ZHANG Yifan, ZOU Qi, ZHANG Peng, JIAO Yanan, AN Liuxu, LIU Yanfeng, ZHANG Daijun, HAO Junjie, CHEN Li. Connection performance and failure mechanisms of three-dimensional woven composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 5-11. |
[2] | YAN Jiqiang, XIE Zongyou, LI Jun, ZOU Qi, LEI Shuai, CAO Tienan, ZHANG Daijun. Effect of ply angle on anti-high speed impact properties of polyimide fiber reinforced composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 12-18. |
[3] | LÜ Xujin, HUO Hongyu, PENG Gongqiu, ZHANG Baoyan, YE Jinqiu, LIU Yong. Electrospun PPESK fiber mats interlayer toughened carbon fiber/epoxy resin composite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 19-27. |
[4] | GUO Miaocai. The interlayer structures and lightning strike damage behaviors of the conductive particles modified highly tough composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 28-36. |
[5] | LI Moying, ZHENG Linfeng, LIU Gang, LI Mengjiao, YAO Jianan. Adhesion study of carbon fiber/polyaryletherketone thermoplastic composites with epoxy coatings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 37-42. |
[6] | HUANG Daming, TANG Lixin, SUN Juntao, WANG Wei. Research on the effect of residual monomer acrylonitrile on the preparation of PAN-based carbon fiber [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 48-51. |
[7] | FENG Zhenhui, WANG Zhe, ZENG Jie, CHEN Binbin, FENG Chunle, ZHOU Fan. A method for optical fiber impact localization and load history reconstruction of composite laminates [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 52-56. |
[8] | ZHANG Dewei, WEI Wei, ZHANG Pin, WANG Qi, ZHAO Cong, AN Luling. Shape control of aircraft composite components based on measured data [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 57-66. |
[9] | YAN Chao, RONG Xiaoyuan, ZHAO Yueqing, QIAN Zhongjian. Curing deformation study of composite cobonding omega stringer stiffened panel [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 67-72. |
[10] | YAN Lei, ZHAO Fei, HUAN Dajun, ZHANG Shengyuan, WANG Bin, XIAO Jun. Research on tension-tensile fatigue behavior and life prediction of T700/PPS filament winding thermoplastic composites with NOL rings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 73-81. |
[11] | CHENG Libing, XU Weiwei, LI Bo, WEN Shiqi. Research on microwave curing process for rib composite parts [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 82-86. |
[12] | WU Haisheng, LUO Jintao, GU Yizhuo, SUN Tianfeng, LIU Jia, YAO Qi, LI Yu. Study on structural stability of high-modulus carbon fiber composite tube in alternating high and low temperature environment [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 87-91. |
[13] | FU Chengjian, LIN Song, GUO Shufen. Prediction and analysis of burst pressure of type Ⅳ composite cylinder based on progressive damage [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 92-97. |
[14] | XU Lin, LIU Chuanjun, ZHAO Chongshu. Application and development trends of composite materials in civil aircraft [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 98-104. |
[15] | SONG Jianhui, YU Xiaochen, ZHU Yingdan, WU Huaping, ZHANG Xiongjun, CHEN Gang. Advances in fatigue performance of fiber reinforced composite-metal hybrid joints [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||